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Viscoelastic effects from the Enskog equation for uniform shear flow

James F. Lutsko*
ESADG, Department of Chemical Engineering, Katholieke Universiteit Leuven, 46 de Croylaan, B-3001 Heverlee, Belgium

~Received 3 April 1997!

The Enskog kinetic equation for hard spheres is the only tractable theory with which the transport properties
of a moderately dense gas can be studied. However, relatively little is known about its solutions outside the
linear regime. In this paper two approximate nonlinear solutions of the Enskog equation for uniform shear flow
are presented: a perturbative solution to second order in the shear rate and to fourth order in velocity moments
and a ‘‘nonperturbative’’ moment solution to all orders in the shear rate and to second order in the velocity
moments. A comparison to the results of nonequilibrium molecular-dynamics simulations shows that the
perturbative results give good estimates of the quadratic corrections to the pressure tensor while the nonper-
turbative solution gives a semiquantitative description of viscoelastic effects including shear thinning and the
normal stresses over a wide range of shear rates. The relevance of these results to the construction of kinetic
models of the Enskog equation is also discussed.@S1063-651X~97!08512-7#

PACS number~s!: 05.20.Dd, 51.10.1y, 51.20.1d, 83.50.Gd
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I. INTRODUCTION

The Enskog equation, describing the time evolution of
one-body distribution function for hard spheres, is the o
tractable and realistic kinetic equation for a moderately de
system@1–3#. It was originally proposed on physical ground
as a heuristic generalization of the Boltzmann equation
has since been further extended by van Beijeren and E
@4# to give a unified basis for the description of fluid, soli
and metastable states@5#. Near equilibrium, the standar
method for analyzing all of these models, since they
structurally very similar, is the Chapman-Enskog expans
At lowest nontrivial order, this gives explicit expressions f
the linear ~Navier-Stokes order! transport coefficients in
terms of the intermolecular potential. The Boltzmann-le
results provide a good description of linear transport in
wide range of low-density gases and mixtures@2,3#. The En-
skog results are well known for their surprising accura
with, e.g., the shear viscosity of the hard-sphere gas b
accurately predicted up to a density of one-half of the fre
ing point @6#. Higher-order terms in the expansion descri
nonlinear transport. However, because of the intricate na
of the models, the expansion is analytically complex to ca
through so that general results are only known to third or
for the Boltzmann equation@2,7#, while only part of the
second- and third-order contributions have been calcula
for the Enskog equation@8#. Apart from these perturbative
results, only a handful of exact solutions are known and t
only for the Boltzmann equation@9#. Thus, even with the
Boltzmann equation, systems far from equilibrium can o
be studied by numerical methods or by means of simplifi
versions of the model. Both of these methods have rece
been extended to the Enskog equation@10,11#, although nei-
ther has yet been widely studied.

The purpose of this paper is to give a picture of nonlin
transport as described by the Enskog theory for the partic
case of a sheared fluid. The state of uniform shear fl
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~USF!, in which the macroscopic flow velocity, defined to b
along thex axis, varies linearly with position along an o
thogonal axis, e.g., they axis, has been the subject of nume
ous studies, both theoretical and by means of computer si
lation @12#. Indeed, one of the rare exact solutions to t
Boltzmann equation is that for a system of Maxwell mo
ecules~interacting via an inverse fourth power potential! un-
dergoing USF@13,14#. This focus of attention is largely du
to the fact that USF can be established by the application
modified ~Lees-Edwards! periodic boundaries@15#, thus
making it easy to simulate and incidently eliminate fro
theoretical analysis complicating features such as bound
layers associated with walls. Furthermore, the state of U
provides a direct probe of some of the transport propertie
the fluid: For example, with the axes mentioned above,
x-y component of the stress tensor is the shear visco
times the shear rate. A final motivation is the fact, discove
@16# about ten years ago, that at high shear rates simple fl
~including the hard-sphere fluid! undergo an ordering transi
tion whereby the atoms are arranged in planes or stri
perpendicular to the flow gradient. Indeed, two closely
lated Enskog-based theories of this transition have been
mulated @17,18#, which, although in qualitative agreeme
with the simulations, require as input the steady-state dis
bution at high shear rates for which the use of the pertur
tive results is questionable. The present work was motiva
in part, by a desire to investigate this point.

As mentioned above, the standard analysis of the Ens
equation makes use of the Chapman-Enskog expansion
cording to which the distribution is expanded in terms o
quantity characterizing the uniformity of the fluid: For US
this is simply the shear rate. This leads to a set of lin
integral equations that are usually solved by means of
Chapman-Cowling expansion@2,3#, which is an expansion in
terms of a set of orthogonal polynomials of the moment
~the Sonine polynomials!. The first expansion obviously lim
its the use of low-order results to small gradients, while
second expansion is devoid of physical content and is sim
a mathematical convenience. An alternative method, fi
proposed by Grad@19,2,3,20,21# for analyzing the Boltz-
434 © 1998 The American Physical Society
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PRE 58 435VISCOELASTIC EFFECTS FROM THE ENSKOG . . .
mann equation, is to first expand the distribution~about local
equilibrium! in terms of a complete set of orthogonal pol
nomials in the momentum. This, together with other simp
fying assumptions, including the truncation of the expans
of the distribution, leads to a set of equations for the coe
cients that are essentially an extension of the Navier-Sto
equations and that have been used to study the behavi
fluids under extreme conditions, e.g., in shock waves.
pending on the number of coefficients retained, Grad’s or
nal equations are known in the literature as the 13- or
moment approximations. More generally, the meth
consists in projecting the kinetic equation onto a fini
dimensional space spanned by the chosen basis function
choice of basis functions being restricted by the particu
boundary conditions being imposed@21#. The moment ap-
proximation is interesting because no explicit assumptio
made about the size of the gradients in the system: Altho
small gradients might provide a justification for truncati
the expansion of the distribution function, it is not in gene
required. Indeed, all of the assumptions Grad made to de
his approximations are exact@20# for the Maxwell gas~in-
verse fourth power potential! undergoing USF described b
the Boltzmann equation, which is in fact the reason t
Ikenberry and Truesdell were able to solve the Boltzma
equation in this case. Thus the moment method has play
role in the study, e.g., of extended hydrodynamic modes@22#
where assumptions about the size of inhomogeneities ca
be made. Here it is shown that the lowest nontrivial order
the moment expansion gives a quantitatively reasona
model for shear thinning and normal stresses at large s
rates. The discussion of this point is an extension of
preliminary account that appeared in Ref.@23#.

In this paper the moment method is applied to the Ens
equation for a system undergoing USF and the solutions
compared to the results of molecular-dynamics simulatio
In Sec. II the existence of a stationary solution under
conditions used to study USF by computer simulation is d
cussed and two calculations based on a moment expansi
the distribution are presented. The first is the complete s
tion to second order in the shear rate and to fourth orde
the~velocity! moments. The second is the solution to seco
order in the moments and to all orders in the shear r
These are compared, in Sec. III, to computer simulations
a relatively dense fluid and it is found that the accuracy
the Enskog equation appears to extend into the nonlin
regime with the perturbative results being numerically ac
rate near equilibrium and the nonperturbative results givin
semiquantitative description of the shear viscosity and n
mal stresses over the entire range of shear rates up to
ordering transition. The paper concludes in Sec. IV with
extended discussion of the implications of these results
the construction of a simple kinetic model of the Ensk
equation and on the construction of a~model! positive-
definite distribution function for strongly sheared har
sphere fluids.

II. MOMENT SOLUTIONS TO THE ENSKOG EQUATION

Both the Enskog and the Boltzmann equations for
one-body reduced distribution function may be written as
-
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]t
f ~qW ,vW ;t !1vW •

]

]qW
f ~qW ,vW ;t !1

]

]vW
•FW ext~qW ,vW ;t ! f ~qW ,vW ;t !

5J@ f , f #, ~2.1!

whereqW and vW are position and velocity and the differenc
between the Enskog and the Boltzmann equations lies in
form of the bilinear collision operator, which is given explic
itly in Appendix A. The final term on the left-hand side is
possible contribution due to an externally imposed one-b
force: Most studies of USF include such a force to maint
a constant temperature as described below. The equa
must be supplemented by boundary conditions, which
taken to be the Lees-Edwards conditions used in comp
simulations of sheared flow@15#. These are defined as per
odic boundaries in the rest frame of the imposed flow profi
Specifically, if the desired flow is taken to be

vW 0~rW !5 a
↔
• rW[ayx̂ ~2.2!

in a Cartesian coordinate system with basis (x̂,ŷ,ẑ), then the
rest-frame coordinates are simplyqW 85qW 2vW 0(qW )t and

vW 85vW 2vW 0(qW ) and periodic boundaries are imposed with r
spect toqW 8. It is easy to verify that if the external force i
only a function ofvW 8 then Eq.~2.1!, expressed in the res
frame, is translationally invariant~for both the Boltzmann
and Enskog collision operators! and since the boundary con
ditions are as well, the equation admits of spatially homo
neous solutions. More generally, the solution need only
periodic in the rest frame and, indeed, recent studies h
indicated that USF may not be the stable state for large
tems @24#. Our interest here, however, is to understand
properties of the relatively small systems studied by co
puter simulation and from which transport and viscoelas
properties may be measured and for these the homogen
solution is of most interest. Given this, we seek solutions t
are spatially homogeneous in the local rest frame. It sim
fies matters to note that such solutions are also homogen
when expressed in terms of the laboratory coordinates
excess velocity in which case we may write

f ~qW ,vW ;t !5 f̃ ~vW 8;t ! ~2.3!

provided, of course, that the external force depends only
the excess velocityvW 8 and time, which will henceforth be
assumed to be true.

To specify the macroscopic state, one needs to know
hydrodynamic fields, the local density velocity, and ener
density, or temperature, which are respectively defined a

r~qW ,t !5E dvW f ~qW ,vW ,t !,

r~qW ,t !uW ~qW ,t !5E dvW vW f ~qW ,vW ,t !, ~2.4!

e~qW ,t ![
3

2
r~qW ,t !kBT~qW ,t !5E dvW

1

2
@vW 2uW ~qW ,t !#2f ~qW ,vW ,t !,
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and, in general, are also determined from the Enskog e
tion

]r

]t
1¹W •ruW 50,

]ruW

]t
1¹W •^vW vW &5^vW FW ext~qW ,vW ;t !&1E dvW vW J@ f , f #,

]

]t
e~qW ,t !1¹W • K vW

1

2
@vW 2uW ~qW ,t !#2L

5^FW ext~qW ,vW ;t !•@vW 2uW ~qW ,t !#&

1E dvW
1

2
@vW 2uW ~qW ,t !#2J@ f , f #, ~2.5!

where the angular brackets indicate an average over ve
ties. ~Here and henceforth, the mass of the particles is ta
to be one.! Given the form of the distribution~2.3!, it imme-
diately follows that the density is spatially homogeneous
is the excess velocityuW (qW ,t)2vW 0(qW ), so that, if the center-
of-mass position and velocity are taken to be zero, we h

uW (qW ,t)5vW 0(qW ). This then implies that e(qW ,t)[^ 1
2 @vW

2uW (qW ,t)] 2&5^ 1
2 (vW 8)2& is also spatially homogeneous an

the conservation equations become

]r

]t
50,

]ruW

]t
50, ~2.6!

]

]t
e~ t !2ai j ^v i8v j8&2^FW ext~vW 8!•vW 8&5

1

2E dvW 8~vW 8!2J@ f , f #,

thus demonstrating that the macroscopic state is indeed
of uniform shear flow with a time-dependent temperature
computer simulations, it is usual to include an external fo
to keep the temperature constant so as to establish a s
state. Although there are many possible choices of the ex
nal force @25#, only the simplest, given byFW ext(vW 8)5gvW 8,
whereg is a constant, will be considered here. Stationarity
the energy then gives

23~rkBT!g5ai j ^v i8v j8&1
1

2E dvW 8~vW 8!2J@ f , f #[ai j Pi j ,

~2.7!

where the last equality follows by comparing Eqs.~2.6! to
the macroscopic conservation laws. With the present ch
of coordinates@Eq. ~2.2!#, ai j 5ad ixd jy and 23(rkBT)g
5aPxy52a2h, whereh is the~shear-rate-dependent! shear
viscosity.

The Enskog equation is usually solved by means of
Chapman-Enskog expansion@2,3#, which, in the presen
case, is an expansion of the distribution in powers of
shear rate. The coefficients of the expansion in turn dep
on the ~scalar! momentum and must be expanded as w
~usually in terms of Sonine polynomials!. An alternative,
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proposed by Grad@2,19,20#, is to first expand the distribution
about the local-equilibrium distribution in terms of the m
mentum as

f ~qW ,pW ,t !5r~qW ,t !f~cW !H 11 (
n50

1

n!
«nA[n] P[n]~cW !J , ~2.8!

where cW5Am/kBTvW 8 is a dimensionless excess velocit
f(cW )5(1/2pkBT)3/2e2c2/2 is the local-equilibrium distribu-
tion, and« is a fictitious parameter used to order the expa
sion. The functionsP[n] (pW ) are a complete set of polynom
als in the components ofpW . The prefactor is chosen for late
convenience and a short notation for multiple indices h
been introduced wherebyA[n][Ai 1••• i n

and repeated indice

are summed. The series is truncated at some finite order«,
to be specific, we keep all terms to order«k, and thek23
unknown coefficients, or moments, are determined by sub
tuting Eq.~2.8! into the Enskog equation and truncating co
sistently to order«k. Explicitly, this gives a set of equation
for the ~space- and time-dependent! coefficients:

]rA[n]

]t K P[ l ]~cW1!
1

n!
P[n]~cW1!L

0

1
1

2
rA[n]

] ln T

]t K S cW•
]

]cW1

P[ l ]~cW1!D 1

n!
P[n]~cW1!L

0

1rA[n]

]uW

]t
•K S ]

]cW1

P[ l ]~cW1!D 1

n!
P[n]~cW1!L

0

1
]rA[n]

]qW
• K vW P[ l ]~cW1!

1

n!
P[n]~cW1!L

0

1
1

2
rA[n]

] ln T

]qW
•K vW S cW•

]

]cW1

P[ l ]~cW1!D 1

n!
P[n]~cW1!L

0

1rA[n]

]uj

]qi
K v i S ]

]c1 j
P[ l ]~cW1! D 1

n!
P[n]~cW1!L

0

5xE dvW 1P[ l ]~cW1!JFrf
1

m!
A[m] P[m] ,rf

1

n!
A[n] P[n] G ,

~2.9!

where ^ &0 indicates a velocity average over the loca
equilibrium ensemble and the factors of« have been sup-
pressed. Indeed, we can now set«51 since these equations
which can be viewed as an extension of the Navier-Sto
equations, are to be solved exactly. However, there ar
general an infinite number of equations so that, as a fi
approximation, all but the firstk equations are discarded~this
is equivalent to projecting the Enskog equation onto the s
space spanned by the firstk basis functions!. For USF the
moment equations reduce to



on
s
ol
lly

if

u
o

e

d
c-
d

s
ko
,
d
in
a

nts
ans
ted

no
the
s to
o-
in-
ffi-

tude
ex-

oly-
g
in
the
pan-
lly
rent
ar
an-
the

de-
e-

an-

n-
SF,
nd

u-

ns,
be
a

me

is

PRE 58 437VISCOELASTIC EFFECTS FROM THE ENSKOG . . .
]A[ l ]

]t
^P[ l ]~cW1!P[n]~cW1!&0

1
1

2
A[n]

] ln T

]t K S cW•
]

]cW1

P[ l ]~cW1!D P[n]~cW1!L
0

1A[n]aji K v i S ]

]c1 j
P[ l ]~cW1! D P[n]~cW1!L

0

1A[n] K S cW•
]

]cW1

P[ l ]~cW1!D FW extP[n]~cW1!L
0

5A[m]A[n]rxE dvW 1P[ l ]~cW1!J@fP[m] ,fP[n] #. ~2.10!

For USF, one expects that the distribution function is a c
tinuous function of the velocity, so it is convenient to choo
the basis functions to be the three-dimensional Hermite p
nomials @20#, which form a complete set and are mutua
orthogonal. They are defined as

Hi 1••• i n
~pW ![n! ~21!nep2/2

]

]pi 1

•••
]

]pi n

e2 p2/2 ~2.11!

and satisfy the orthogonality property

S 1

2p D 3/2E dpW e2 p2/2H [n]~pW !H [m]~pW !5n!dnmd [n][ m] ,

~2.12!

with the multi-index Kronecker delta function defined as 0
nÞm and

d [n][ n8][
1

n! (
P$ i 1••• i n%

d i 1i
18
•••d i ni

n8
~2.13!

where the notation indicates that the sum is over all perm
tations of the indices. Two useful properties of the polyn
mials are

piH j 1••• j n
~pW !5Hi j 1 ••• j n

~pW !1nd i ~ j 1
H j 2••• j n)~pW !,

~2.14!
]

]pi
H j 1••• j n

~pW !5nd i ~ j 1
H j 2••• j n)~pW !,

where we use a special notation in which symmetriz
indices are grouped by round parenthesis~e.g., d ( i j )[

1
2!

(d i j 1d j i ). In this case, it follows that̂ H [n] (cW )&5A[n]

and, in particular, ^ 1
2 v82&5 1

2 kBT^Hrr (cW )13H @0#&5 3
2 kBT

1 1
2 kBTArr so that, in general, one must impose the con

tions A[0]5A[1]5Arr 50. Consequently, the density, velo
ity and energy fields are, in the general case, determine
the conservation equations~2.5!, while the other moments
are determined from Eq.~2.9!. An alternative choice of basi
that is closely related to the more familiar Chapman-Ens
expansion is to take the set$P[n] (pW )% to be the traceless
symmetric tensors of ordern @20#. These are simply relate
to the spherical harmonics@20# and represent an expansion
the angular dependence of the distribution. This set is p
-
e
y-

-
-

d

i-

by

g

r-

ticularly useful for generating an expansion in the gradie
of the hydrodynamic fields since their tracelessness me
that the coefficients of the expansion can only be construc
from the gradients: Terms involving unit tensors give
contribution. Thus, for USF, a solution to second order in
shear rate only requires the retention of terms in the serie
fourth order in the momentum. However, although polyn
mials of different order are orthogonal under an angular
tegration, they do not form a complete set and the coe
cients of the expansion depend in general on the magni
of the momentum. Practically, this necessitates a second
pansion of this scalar dependence for which the Sonine p
nomials are usually used~the so-called Chapman-Cowlin
expansion@2,3#!. In fact, for the case of a steady state
which only a single gradient is present, as in USF,
Chapman-Enskog expansion is essentially a moment ex
sion ordered by the gradient, although it is not usua
phrased as such. In summary, let us note that these diffe
possibilities are all equivalent, differing only in the particul
terms included or excluded at a given order in the exp
sions: a difference that should be of minor importance if
expansions are to be useful.

For USF, the tensorial nature of the coefficients must
rive from the shear tensor and the unit tensor, which imm
diately implies that only even terms can occur in the exp
sion. The moment equations reduce to

n~ad rxdsy1gd rs!@«nd r ~ i 1
Ai 2••• i n)s

1~n21!«n22d r ~ i 1
Ai 2••• i n21

d i n)s

5D [ i 1••• i n]1« lC[ i 1••• i n][ l ]A[ l ]

1« l 1mB[ i 1••• i n][ l ][ m]A[ l ]A[m] , ~2.15!

with

B[ i 1••• i n][ l ][ m]

[rx
1

l !m! E dvW 1H [ i 1••• i n]~cW1!J@fH [ l ] ,fH [m] #,

C[ i 1••• i n][ l ]5B[ i 1••• i n][0][ l ]1B[ i 1••• i n][ l ][0] ,

D [ i 1••• i n]5B[ i 1••• i n][0][0] , ~2.16!

and the conditionArr 50 serves to define the thermostat co
stant. These equations exhibit an important feature of U
which is the fact that the kinematic terms, on the left-ha
side of Eq.~2.15!, only couple thenth equation to moments
of ordern and lower~specifically, onlyn andn22). In the
case of Maxwell molecules, the forward couplings, i.e., co
plings of the nth equation to moments of ordern11 or
higher, which occur on the right-hand side of the equatio
are exactly zero, which is the reason the system can
solved@20#. As shown below, the forward couplings have
relatively small effect in the present case, thus giving so
heuristic justification for the moment method.

Summarizing, the approximation to the kinetic equation
obtained by neglecting all terms in Eqs.~2.8! and ~2.15!
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above order«k. There are still an infinite number of equa
tions and now only a finite number of coefficients to det
mine, so it is necessary to introduce a further approxima
according to which we neglect all but the firstk equations.
Effectively, this corresponds to projecting the Enskog eq
tion into the subspace spanned by the firstk basis functions.
As the order of the approximation increases, this proced
generates a sequence of approximations to the full kin
equation. To order«4, one finds

2~adxrdys1gd rs!~d r ~ id j )s1d r ~ iAj )s

5~Di j 1C[ i j ][2 8]A[28]1C[ i j ][4 8]A[48]

1B[ i j ][2 8][2 9]A[28]A[29] !, ~2.17!

4~adxrdys1gd rs!~d r ~ iAjlm)s13d r ~ iAjl dms)

5~Di jlm1Ci jlm ,[28]A[28]1Ci jlm ,[48]A[48]

1Bi jlm ,[28][2 9]A[28]A[29] !,

together with the equation fixing the thermostat

2aAxy16g5~Drr 1C[ rr ][2 8]A[28]1C[ rr ][4 8]A[48]

1B[ rr ][2 8][2 9]A[28]A[29] !. ~2.18!

The primary difference between the solution of the Bol
mann equation and the Enskog equation for USF is that
the Boltzmann equation, the coefficients appearing on
right-hand sides of these equations are shear-rate inde
dent, whereas for the Enskog equation, they have a com
dependence on the shear rate.

A. Perturbative solution

The evaluation and expansion of the coefficients app
ing in Eq. ~2.17! is discussed in the appendixes. It is al
necessary to expand the coefficientsA[2] and A[4] in the
shear rate as, e.g.,Ai 1i 2

5aAi 1i 2
(1) 1a2Ai 1i 2

(2) 1••• . Since the

only two tensors available are the shear tensor and the
tensor, the coefficients to first order in the shear rate m
have the formAi 1••• i n

(1) 5n!nndx( i 1
•••d i n)y , wherenn is to be

determined. Similarly, the second-order contributions m
have the form

Aij
~2!52~«1dij1«2dx(idj)x1«3dy(idj)y , ~2.19!

Ai jlm
~2! 524~s1d ( i j d lm)1s2dx( id j l dmx)1s3dy( id j l dm)y

1s4d~xxyy!~ i j lm ! !,

with the condition that 3«11«21«350. Straightforward
calculation then leads to a set of linear equations for
coefficients~details are given in Appendix B!. The first-order
coefficients are found to be

n25S 205

202Dm, n452
6

205
n2 , ~2.20!

with

m52F 5

16rxAp
S 11

4p

15
rx D G ,
-
n

-

re
ic

-
r
e

en-
ex

r-

nit
st

t

e

while the second-order coefficients are

«25«32
1025

3232rxAp
n21

105

808rxAp
n4 ,

«35
199

8484
1

15

808rxAp
S 11

47

63
rxp D n22

5

202
n2

2

1
5

707
Apn4 ,

s15g12
1

3
g22

1

3
g31

1

35
g4 ,

s25g22
1

7
g4 ,

s35g32
1

7
g4 ,

s45g4 , ~2.21!

with

g15
1

480
2

1

32rxAp
S 11

4

15
rxp D n22

1

60
n2

2

2
5

32rxAp
S 11

22

75
rxp D n4 ,

g25g31
15

1616rxAp
n22

105

404rxAp
n4 ,

g35
1

1414
2

15

404rxAp
S 11

11

105
rxp D n22

31

1414
n2

2

2
10

707
Apn4 ,

g45
1

687
2

315

1832rxAp
S 11

44

315
rxp D n21

23

458
n2

2

2
23

458
Apn4 . ~2.22!

The exact value@2# of n2 is 1.016m compared to the presen
result of 205

202m51.015m. It is interesting to compare thes
results with those obtained if the forward couplings in t
moment equations are neglected. In this case,n25m , n450,
and

«25«32
5

16Aprx
n2 ,

«35
1

42
1

1

84
Apn22

1

28
n2

2. ~2.23!

By way of comparison, if takingrx51 ~i.e., r slightly less
than 0.5!, then the full solution givesn2520.3288,
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n450.0096, «22«350.0595, and «350.0094, whereas
without the forward couplings the result isn2520.3240,
n450.0, «22«350.0571, and«350.0132. Although not
completely negligible, the effect of the forward couplings a
nevertheless relatively small, being comparable to the dif
ence between the exact value ofn2 and the simplest approxi
mationn25m.

Combining Eqs.~2.19! and~2.8! gives the explicit form of
the distribution to fourth order in the moments and to seco
order in the shear rate:

f (pW )5rf(pW ){1 1a[n21n4(p227)]pxpy1a2g1(p4210p2

115)1a2@«21g2(p227)](px
22 1

3 p2)

1a2[«31g3(p227!]( py
22 1

3 p2}

1a2g4(px
2py

22 1
7 p2px

22 1
7 p2py

21 1
35 p4)} 1o~a!3.

~2.24!

The pressure tensor for a homogeneous system is given

Pi j 5rAi j 1
1

2
ms3x K E dq̂ Q~ q̂•gW !~ q̂•gW !2q̂i q̂ j L

~2.25!

where the integral is over the unit sphere. Straightforw
calculation gives for the pressure

P2p052a2rFAp

105
xrS 1

2
Ap22n21n4D G1o~a3!,

~2.26!

where the equilibrium pressure isp05r@11(2p/3) rx#.
The normal stresses are

Pxx2Pyy52a2r~«22«3!S11
4p

15
rx D1o~a3!,

Pxx2Pzz52a2rF«2S 11
4p

15
rx D

1
2Ap

45
rxS 1

2
Ap12n21n4D G1o~a3!

~2.27!

and the only off-diagonal component is

Pxy5Pyx52raFn2S 11
4p

15
rx D1

4Ap

15
rxG1~a3!.

~2.28!

These expressions may all be decomposed into the sum
kinetic contribution~zeroth order inrx) and a collisional
contribution~first order inrx). The accuracy of Eqs.~2.26!
and ~2.27! has recently been confirmed by comparison
direct simulation of the Enskog equation@26#.

B. Nonperturbative solution

The validity of the perturbative solution is obviously r
stricted to the case of small gradients. It is not clear, ho
r-

d

y

d

f a

-

ever, that the approximate moment equations are so c
strained. In the case of Maxwell molecules, the forwa
couplings vanish identically irrespective of the size of t
gradients and, as we have seen, their neglect has relat
little effect on the perturbative results. It therefore see
reasonable to solve these equations without the assump
of small gradients. Because of the difficulty of carrying o
the calculations, only the equations for the second mome

2a~dx( id j )y1dx( iAj )y!12g~d i j 1Ai j !

5Ci j [0]1Ci j ,lmAlm , ~2.29!

2aAxy16g5Crr [0]1Crr ,lmAlm , ~2.30!

with the ~exact! coefficients

Ci j [0]5rxE dq̂qiqj H 1

Ap
w2e2 w2/41

1

2
w~w212!

3FerfS 1

2
wD21G J , ~2.31!

Ci j ,lm5
1

2
rxE dq̂S H 8

Ap
e2w2/416wFerfS 1

2
wD21G

3qiqjqlqm2H 2

Ap
e2w2/41wFerfS 1

2
wD21G J

3~qjqld im1qjqmd i l 1qiqld jm1qiqmd j l !

2H 2

3Ap
~w218!e2w2/4

1
1

3
w~101w2!FerfS 1

2
wD21G J qiqjd lmD .

are considered here. These are solved numerically usin
quasi-Newton method@27#. Numerically, better convergenc
is achieved by replacing Eq.~2.30! by the original condition
Axx1Ayy1Azz50. All of the calculations presented belo
are accurate to one part in 104 or better.

III. COMPARISON TO MOLECULAR DYNAMICS

In order to evaluate these results, I have performed n
equilibrium molecular dynamics~MD! simulations of a hard-
sphere fluid with densityrs350.5 ~about one-half the freez
ing density and sufficiently high that collisional effects a
important!. The flow state is imposed by means of Lee
Edwards boundary conditions and the temperature is m
tained approximately constant at a valuekBT051 by rescal-
ing the velocities to give a temperature of 0.95T0 whenever
the temperature exceeds 1.05T0. For each value of the shea
rate, the simulations begin with an equilibrated fluid and
run for 33106 collisions to reach the steady state. The s
tems are then run an addtional 33106collisions to accumu-
late the statistics. The various quantities are average
10 000 collisions and recorded. The errors are estimated
ing Erpenbeck’s pooling method@28#, according to which
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the recorded values are averaged, or pooled, over some
period, say, in groups of 50 000 collisions. The standard
ror ~standard deviation divided by the square root of
number of samples! is then computed over these pooled v
ues. These estimated errors are found to be insensitive to
exact choice for the period and are in all cases comparab
or smaller than the size of the symbols used in the figu
below.

Figure 1 shows a comparison of the kinetic parts of
normal stresses as calculated from the two analytic solut
and the MD results. The simulations span a range of sh
rates from equilibrium toa* 5a/4rApkBT50.7: Above this
the fluid begins to order and the present analysis beco
inapplicable@29#. The value ofx has been taken to give th
equilibrium pressure as determined in the simulations. N
that because of the thermostat, the kinetic contribution to
pressure is fixed so there are only two independent nor
stresses. Both calculations give good approximations
Pyy2Pzz, with the perturbative calculation being slight
better. However, forPxx2Pyy the perturbative estimate i
only accurate for small shear rates whereas the nonpertu
tive estimate is in reasonable agreement over the entire r
of shear rates. The reason for this can be seen in Fig
which shows the same data in the form of the viscome
functions defined as c15 (Pxx2Pyy)/a

2 and
c25 (Pyy2Pzz)/a

2. The latter is nearly constant over th
entire range of shear rates so that the inclusion of the fou
order moments in the perturbative calculation improves
agreement relative to the nonperturbative estimate. In c

FIG. 1. Kinetic parts of the reduced normal stressesPxx* 2Pyy* ,
where the dimensionless pressure tensor isPi j* 5Pi j /rkBT, as a
function of reduced shear rate (a* 5a/4rApkBT) for r50.5 as
determined from simulation~filled circles!, the perturbative calcu-
lation ~filled squares!, the nonperturbative calculation~solid line!,
and the proposed kinetic model@Eq. ~4.8!# ~filled triangles!. The
corresponding results forPyy* 2Pzz* are shown with open symbols

FIG. 2. Kinetic parts of the reduced viscometric functions
r50.5 ~same legend as Fig. 1!.
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trast, the first viscometric function exhibits a strong she
rate dependence so that only its asymptotic value is e
mated in the perturbative calculation. Another qualitati
difference between the two approximations is that the n
perturbative solution gives a semiquantitative model
shear thinning whereas this is absent from the perturba
solution since it is an ordera3 effect. Figure 3 compares th
kinetic contributions to the shear viscosity defined
h52 Pxy /a. The agreement is reasonable over the en
range of shear rates with the model accounting for ab
80% of the decrease of the viscosity ata* 50.7.

The collisional contributions to the pressure tensor
volve an additional approximation compared to the kine
parts since they depend in general on all of the mome
Thus one does not expect the results of either of the ca
lations to be as accurate at large shear rates as in the ca
the kinetic parts. The collisional contributions to the norm
stresses are compared in Fig. 4 and, as expected, the a
ment is poorer than for the kinetic contributions. Somew
surprisingly, the collisional contributions to the pressu
~Fig. 5! are extremely well modeled by the nonperturbati
calculation. The worst agreement is in the collisional con
butions to the shear viscosity as shown in Fig. 6. Althou
the effects are very small, it is nevertheless the case tha
calculated decrease up toa* 50.7 is only about a one-third
of the actual decrease, which seems to indicate that it is
most sensitive to the truncation of the expansion of the c
lision integrals.

FIG. 3. Kinetic part of the shear viscosity as a function of r
duced shear rate forr50.5. The circles are from MD, the line is
calculated from the nonperturbative theory, and the triangles
from the proposed kinetic theory.

FIG. 4. Collisional parts of the reduced normal stresses
r50.5 ~same legend as Fig. 1, except that now the triangles are
maximum entropy result@Eq. ~4.15!#.
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IV. CONCLUSIONS

The calculations presented here serve to show that
Enskog equation can be used to describe nonequilibr
fluid properties at moderate density extend well beyond
linear regime. The perturbative calculations are in go
agreement with the simulations at small shear rates and
for particular properties differ significantly at large she
rates. The nonperturbative calculations illustrate an alte
tive means of analyzing the Enskog equation and yield, w
relatively little effort, a more realistic description of the no
mal stresses and a semiquantitative model of shear thin
at large shear rates. It is clear that low-order moment exp
sions of the distribution are of limited use in describing c
lisional transfer even when they are accurately determin

These results are also of some relevance to a recen
tempt to formulate a kinetic model of the Enskog equati
The simplest kinetic model of the Boltzmann equation
the Bhatner-Gross-Kook~BGK! model, which is based on
the observation that the Boltzmann collision operator can
written in the form

J@ f , f #52n$ f ~1!2f~1!% ~4.1!

~see Appendix A! where, in the BGK approximation, th
velocity-dependent prefactor is approximated by a~constant!
relaxation time and the second term in square brackets by
local equilibrium~LE! distribution function. These approxi
mations are based on the fact that the LE distribution is
the null space of the Boltzmann operator and on the idea
the main role of collisions is to drive the system towar
~local! equilibrium. For USF, the BGK equation becomes

FIG. 5. Collisional contribution to the reduced pressure a
function of reduced shear rate forr50.5 ~same legend as Fig. 4!.

FIG. 6. Collisional contribution to the shear viscosity f
r50.5. The circles are from MD, the line is from the nonperturb
tive theory, and the triangles are the maximum entropy result@Eq.
~4.15!#.
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2avy

]

]vx
f 1g

]

]vW
•vW f 52n~ f 2f!. ~4.2!

The extension of this model to the Enskog equation is
straightforward. In part, this is due to the fact that the L
distribution is not in the null eigenspace of the Enskog o
erator. An obvious remedy is to write

J@ f , f #5J@f,f#1~J@ f , f #2J@f,f#!'J@f,f#2n~ f 2f!,
~4.3!

which reduces to the BGK model for the Boltzmann opera
while giving a part of the collisional transfer that distin
guishes the Enskog operator. However, the equation for
thermostat that results is

2^avyvx&23~rkBT!g5rxE dvW v2J@f,f#, ~4.4!

which differs from the Enskog result~2.7! in that the colli-
sional term on the right-hand side is evaluated using the
distribution so that only a part of the collisional contributio
to the viscosity is obtained. This suggests that more car
treatment of the collisional term is needed. To this end, n
that, in terms of the moment equations, the original BG
approximation replaces all of the collisional coefficients by
single representative eigenvalue @21# B[n][ l ][ m]

BGK

52n(d l0d [n][ m]1dm0d [n][ l ] ). The approximation suggeste
above@Eq. ~4.3!#, for the Enskog operator keeps all momen
of the LE term but replaces all others by an eigenvalue
particular, this means that the coefficientsB[n][0][0] are re-
tained exactly and the others approximated: The obvious
tension is to retain more of the moments. This sugges
class of approximations whereby the collision operator
separated into two pieces as above, in which the loc
equilibrium term is kept exactly as is some subset of
moments of the second piece. The higher moments
treated approximated with a single relaxation time giving
general approximation

J@ f , f #5 (
n,l ,m

H [n]B[n][ l ][ m]A[ l ]A[m]

.(
n

H [n]B[n][0][0] 1 (
n,l ,mPS
l 1m.0

H [n]B[n][ l ][ m]A[ l ]A[m]

1 (
n,l ,m¹S
l 1m.0

H [n]B[n][ l ][ m]
BGK A[ l ]A[m]

5J@f,f#1 (
n,l ,mPS
l 1m.0

H [n]B[n][ l ][ m]A[ l ]A[m]

2nS f 2f2 (
nPS
n.0

H [n]A[n] D , ~4.5!

where the set of moments retained exactly is indicated by
notationn,l ,mPS ~this notation is schematic and, in particu
lar, does not imply that thesameterms be used in the sum
over n as in that overl ,m). This must be supplemented b
the self-consistency condition

a

-
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A[ l ]5^H [ l ]& ~4.6!

for all l . Except for the special treatment of the loca
equilibrium term, this is a direct generalization of the Gro
Jackson extension@30,21# of the BGK model. Notice that
this involves two types of approximation. The first is th
choice of momentsA[ l ] retained in the first sum on the thir
line that arise from approximating the distribution by its m
ment expansion. The second approximation is the selec
of the number of terms retained in the expansion of the c
lision operator itself~i.e., the range of the sums overn).
Before discussing specific choices, we note that one d
ciency of this model is that it does not reduce to the stand
BGK model at low density. To achieve this corresponden
one should separate out the Boltzmann contributions by w
ing

J@ f , f #.J@f,f#1 (
n,l ,mPS
l 1m.0

H [n]B[n][ l ][ m]A[ l ]A[m]

2nS f 2f2 (
n.0;nPS

H [n]A[m] D
5J@f,f#1 (

n,l ,mPS
l 1m.0

H [n]~B[n][ l ][ m]2B[n][ l ][ m]
B !

3A[ l ]A[m]2n~ f 2f!

1 (
n,l ,mPS
l 1m.0

H [n]~B[n][ l ][ m]
B 2B[n][ l ][ m]

BGK !A[ l ]A[m] ,

~4.7!

where B[n][ l ][ m]
B are the couplings in the Boltzmann limi

Neglect of the last term is part of the BGK approximation
the Boltzmann equation and so it is consistent to drop
giving the general BGK-like approximation to the Ensk
equation

]

]t
f 1vW •

]

]qW
f 1

]

]vW
•FW extf 5J@f,f#2n~ f 2f!

1 (
n,l ,mPS
l 1m.0

H [n]~B[n][ l ][ m]

2B[n][ l ][ m]
B !A[ l ]A[m] ~4.8!

together with the self-consistency relation~4.6!. The price
paid for maintaining contact with the usual BGK approxim
tion is that while Eq.~4.5! can be systematically extende
by the inclusion of more moments, to~presumably! approxi-
mate the Enskog equation arbitrarily closely, Eq.~4.8! can
only be a model of the Enskog equation since it rests on
uncontrolled approximation.

The kinetic model for the Enskog equation suggested
Ref. @11#, henceforth referred to as the Dufty-Santos-Br
~DSB! model, consists of taking all values ofl ,m above and
restricting the sum overn to include only the projections
onto $H [0]51,H [1]5cW ,H [ rr ]5c223%. @To project ontoHrr

one writesHi j 5
1
3 Hrr d i j 1(Hi j 2

1
3 Hrr d i j ) and ignores the
-

on
l-

fi-
rd
,

t-

t,

-

n

n
y

contributions from the second~traceless! term.# Additionally,
the DSB model also expands the termJ@f,f# in Hermite
polynomials and makes the same truncation of the series
this difference is not of conceptual importance, although
does lead to quantitatively inaccurate transport coefficie
It is instructive to consider the moment equations obtained
this approximation for the case of USF:

~ad rxdsy1gd rs!~nd r ( i 1
Ai 2••• i n)s1d r ( i 1

Ai 2••• i n21
d i n)s!

5Di 1••• i n
2nAi 1••• i n

1dn2d i j (
l 1m.0

~B[ rr ][ l ][ m]

2B[ rr ][ l ][ m]
B !A[ l ]A[m] . ~4.9!

The main simplifying feature of this model is the decoupli
of the moments forn.2. For example, the equations for th
fourth moments are

~ad rxdsy1gd rs!~nd r ( iAjlm)s1d r ( iAjl dm)s

5Di jlm2nAi jlm , ~4.10!

so that it is possible to immediately solve for the four
moment~or in general all moments forn.2) in terms of the
second moments which are determined by the nonlin
equation~4.9!. However, to carry through this program st
requires the evaluation of the entire~infinite! set of couplings
entering into Eq.~4.9!, which is, of course, impractical. In
fact, for USF the model is not actually any easier to so
than is the model obtained by retaining the full set of m
ment equations and dropping the forward couplings~which
has the advantage of being the first step in a systematic
lution of the Enskog equation!. On the other hand, the DSB
model does have the key simplifying feature of the BGK a
Jackson-Gross models which is that the velocity depende
of the distribution is simple and explicitly given@21#. An
obvious simplification is to limit the moments entering in
the DSB model, namely,Alm andAlmr . The simplicity of the
BGK model is only achieved by limiting attention to th
linear terms giving a very simple model

]

]t
f 1vW •

]

]qW
f 1

]

]vW
•FW extf

5J@f,f#2n~ f 2f!1ciDCi ,lmAlm

1~c223!
1

3
~DCss,lmAlm1DCss,lmrAlmr!, ~4.11!

where DCrr ,lm5Crr ,lm2Crr ,lm
B and which, with the self-

consistency condition~4.6!, gives a simpler and more quan
titatively accurate kinetic model than the original DSB pr
posal. For USF this becomes

2acy

]

]cx
f 1g

]

]cW
•cW f 5J@f,f#1S 1

3
c221DDCss,lmAlm

2n@ f ~cW !2f#, ~4.12!

from which the equation for the second moments are ea
found to be
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2~ad rxdsy1gd rs!~d r ~ i !A~ j !s1d r ~ i !d~ j !s!

5Di j 1d i j

1

3
DCrr ,lmAlm2nAi j ~4.13!

together with the usual condition thatArr 50. The co-
efficients DCrr ,lm5Crr ,lm2Crr ,lm

B 5Crr ,lm(a)2Crr ,lm(0),
whereCrr ,lm(a) is the same as in Eq.~2.33!. After solving
for Ai j , Eq. ~4.11! can be directly integrated to give the fu
distribution. Choosing the relaxation time to give the corr
viscosity in the low-density ~Boltzmann! limit gives
n5 16Aprx/5. This model, based on the DSB proposal b
extended by inclusion of the local-equilibriumJ@f,f# terms
and simplified by keeping only the linear, second mom
contributions, is in surprising agreement with both the no
perturbative results given above and the simulations.
equilibrium shear viscosity is

h52rFmS 11
4p

15
rx D1

4Ap

15
rxG ,

which is the usual~lowest Sonine! Enskog result. The kinetic
parts of the viscometric functions as calculated with t
model are shown in Figs. 1–3 and are seen to be compar
to the moment solution. For the shear viscosity, the decre
of the kinetic contribution with increasing shear rate is ev
somewhat closer to the simulation values than in the non
turbative calculation.

Although these results show that it is possible to constr
simple kinetic models of the Enskog equation, they are
limited value in the study of USF far from equilibrium
beause even in this simple case, the analytic form of
distribution is sufficiently complicated that it is not possib
to calculate collisional contributions, e.g., to the press
tensor, analytically. Given the recent development of
merical methods of solving the Enskog equation itse
there seems to be little incentive to carry through the ca
lations for the kinetic model numerically. To develop
useful approximate distribution, it is interesting to conside
proposal of Ordo´ñez, Brey, and Santos@31# in the context
of the Boltzmann equation which is that the nonequilibriu
distribution be modeled by maximizing the entrop
2*dqW dvW 8 f (qW ,vW 8)ln f(qW,vW8), subject to the constraint tha
the known moments be reproduced@in the present case tha

^H [n] (cW )&5A[n] for the known momentsA[n]#. Requiring
agreement through the second moments gives

f ~qW ,vW !5rS 1

2pkBTD 3/2

~detD!2 1/2expS 2
1

2kBT
vW •D21

•vW D ,

~4.14!

with D i j 5d i j 1Ai j . As an example of the use of this ap
proximation, the kinetic contributions to the pressure are,
construction, the same as those obtained from the m
used to evaluate the second moments, while the collisio
contributions are easily determined to be

1

rkBT
Pi j

~c!52rxE dq̂ q̂i q̂ ju
2FS w

2uD , ~4.15!

with
t

t

t
-
e

s
ble
se
n
r-

ct
f

e

e
-
,
-

a

y
el
al

u5A11Ai j q̂i q̂ j ,

w5aq̂xq̂y ~4.16!

F~x!5
112x2

4
@12erf~x!#2

x

2Ap
e2x2

.

The results using this model, with the second moments ta
from the nonperturbative calculation, are also shown in F
4–6 and are seen to be comparable to, or even slightly be
than, using the second moments. For kinetic theory calc
tions of the properties of strongly sheared fluids, such
those presented in Refs.@17,18,29#, which are based on the
first-order~in the shear! perturbative correction to the equ
librium distribution, the use of the model distribution give
by Eqs.~4.15! and~4.16!, which is simple, positive definite
and gives a qualitative description of nonlinear effects su
as shear thinning and normal stresses, would appear to
more realistic alternative and is currently being investigat

In summary, these results show that the Enskog equa
can be used to predict the properties of a sheared fluid
into the nonlinear regime by means of the moment exp
sion. It has been shown that this information can be use
extend and simplify the DSB model to give a simple kine
model of the Enskog equation, which, like the BGK mod
on which it is based, is exactly integrable for USF. Final
these results have been used to give a simple, posit
definite model of the distribution function for USF.
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APPENDIX A: THE ENSKOG COLLISION OPERATOR

Using the shorthand notationf (1;t)5 f (qW 1 ,pW 1 ;t), the
collision operator appearing in the Enskog equation can
written as

J@ f , f #[xE dpW 2T̄2~12! f ~1;t ! f ~2;t !

[2s2xE dpW 2E dqW d~q2s!ugW •q̂u@Q~gW •q̂!b12

2Q~2gW •q̂!# f ~1;t ! f ~2;t ! ~A1!

where the first line introduces the hard-sphere scattering
erator and, in the second line,qW 5qW 12qW 2, gW 5pW 12pW 2 and the
operator b12 replaces gW by its postcollisional value
gW 85gW 2q̂(gW •q̂). The hard-sphere diameter has been exp
itly written so as to make clear the relation to the Boltzma
collision operator that is obtained by settings50 andx51.
Thus the Boltzmann operator is local in the sense that
spatial arguments are evaluated at the same point; the
that this is not so for the Enskog operator accounts for
additional shear-rate dependence occurring in the mom
equations. It is also clear that since the spatial dependenc
the collision operator occurs only throughqW it is translation-
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ally invariant. Notice also that this can be arranged into
BGK form, ~4.1! by defining

n52s2xEdpW2EdqW d~q2s!ugW•q̂uQ~2gW•q̂!f~1;t!f~2;t!,

f5

2E dpW 2E dqW d~q2s!ugW •q̂uQ~gW •q̂!b12f ~1;t ! f ~2;t !

E dpW 2E dqW d~q2s!ugW •q̂uQ~2gW •q̂! f ~1;t ! f ~2;t !

.

~A2!

To carry out the calculations, one needs to evaluate the
efficients

B[L][ M ][ N][rx^H [L]~1!T̄2~12!H [N]~1!H [ M ]~2!&

[rx^H [N]~1!H [ M ]~2!T1~12!H [L]~1!&,
~A3!

where T1(12) is the conjugate of the scattering opera
T̄2(12) and is given by

T1~12!52s2E dqW d~q2s!Q~2gW •q̂!gW •q̂~b1221!

5s2E dq̂ Q~2gW 8•q̂2aw!~gW 8•q̂2aw!~b1221!,

~A4!

with w5q̂xq̂y . The perturbative expansion of the coef
cients then follows from an expansion of this operator. Fi
expand the momentum transfer operator as

b12H~pW 18!5H@pW 182q̂~gW •q̂!#

5H@pW 182q̂~gW 8•q̂!2awq̂#5H@pW 182q̂~gW 8•q̂!#

2awq̂•
]

]cW2

H@pW 182q̂~gW 8•q̂!#

1
1

2
a2w2q̂r q̂s

]2

]c2r]c2s
H@pW 182q̂~gW 8•q̂!#1•••

[b128 H~pW 18!2awq̂•
]

]cW2

b128 H~pW 18!

1
1

2
a2w2q̂r q̂s

]2

]c2r]c2s
b128 H~pW 18!1o~a!3 ~A5!

so that one can write

T1~12!5T1
~0!~12!1aT1

~1!~12!1a2T1
~2!~12!1o~a!3,

~A6!

with

T1
~0!~12!52s2E dq̂ Q~2gW 8•q̂!~gW 8•q̂!~b821!,

T1
~1!~12!52s2E dq̂ Q~2gW 8•q̂!q̂xq̂yS ~b821!

2~gW 8•q̂!q̂r

]

]p2r8
b8

]

]p1r8
D , ~A7!
e

o-

r

t,

T1
~2!~12!52s2E dq̂ Q~2gW 8•q̂2aw!~ q̂xq̂y!2

3S 22q̂rb8
]

]p1r8
1~gW 8•q̂!q̂r q̂s

]2

]p2r8 p2s8
b8D .

Substituting this into Eq.~A3! gives the desired expansion

APPENDIX B: PERTURBATIVE EXPANSION
OF THE EQUATIONS

Recall the fourth-order equations given in the text:

2~adxrdys1gd rs!~d rx~ id j )s1d r ~ iAj )s!

5~Di j 1C[ i j ][2 8]A[28]1C[ i j ][4 8]A[48]

1B[ i j ][2 8][2 9]A[28]A[29] !,

4~adxrdys1gd rs!~d r ~ iAjlm)s13d r ~ iAjl dm)s!

5~Di jlm1C[ i j lm ][2 8]A[28]1C[ i j lm ][4 8]A[48]

1B[ i j lm ][2 8][2 9]A[28]A[29] !,

B[L][ M ][ N][rx^H [N]~1!H [ M ]~2!T1~12!H [L]~1!&,
~B1!

C[L][ M ][B[L][ M ][0] 1B[L][0][ M ] ,

D [L]5B[L][0][0] .

Given the fact that the coefficients are at least of first orde
the shear rate, we see that we needD [2] andD [4] to second
order in the shear rate,C[L][ M ] to first order, andB[2][2 8][2 9]
and B[4][2 8][2 9] to zeroth order. The general couplings a
given in Eq.~A3!. The required zeroth order couplings a
all given in Ref.@17#, except forC24

(0)5C42
(0) . The complete

set is

1

a
C[ i j ][2]

~0! A[2]523A~ i j ! , ~B2!

1

a
C[ i j ][4]

~0! A[4]52
6

7
~3A~ i j rr !2d i j A~rrss!!,

1

a
C[ i j lm ][2]

~0! A[2]52
6

7
~3A~ i j d lm)2Arr d~ i j d lm! ,

1

a
C[ i j lm ][4]

~0! A[4]52
229

42
Ai jlm1

43

28
Arr ~ i j d lm)

1
5

28
Arrssd~ i j d lm) ,

1

a
B[ i j ][2][2 8]

~0! A[2][2 8]52
3

14S Ari Ar j 2
1

3
d i j ArsArsD ,

1

a
B[ i j lm ][2][2 8]

~0! A[2][2 8]5
23

14
A~ i j Alm)2

41

14
Ar ~ id j l Am)r

1
5

14
ArsArsd~ i j d lm) ,
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wherea5 (16Ap/15)r2x. The first-order coefficientsCmn
(1)

are only needed in the combinationCmn
(1)An

(1) and, as noted in
the text, the first-order moments have the fo
An

(1)52nnadx( i 1
•••d i n)y , wherenn is a ~shear-independent!

constant. It turns out to be convenient to calculate the co
binationCmn

(1)An
(1) directly. Interestingly, these can be worke

out for generaln,m and are only nonzero ifm5n22 or
m5n. For the cases of interest, I find

C[ i j ][2 ‡
~1! A[2]

~1!5a2rxn2

8p

105
~26d i j 12dxidx j12dyidy j!,

C[ i j lm ][2]
~1! A[2]

~1!52a2rxn2

96p

315
~2d~ i j d lm)2dx~ id j l dm)x

2dy~ id j l dm)y122d [xxyy][ i j lm ] !, ~B3!

C[ i j lm ][4]
~1! A[4]

~1!52a2rxn4

32p

315
~11d~ i j d lm)12dx~ id j l dm)x

12dy~ id j l dm)y146d [xxyy][ i j lm ] !.

Finally, the local-equilibrium terms are

Dij522arx
8p

15
dx~ id j )y12a2rx

4Ap

105
~d i j 12dxidx j

12dyidy j!1o~a3!, ~B4!

Di jlm5a2rx
88Ap

315
~d~ i j d lm)14dx~ id j l dm)x14dy~ id j l dm)y

18d [xxyy][ i j lm ] ).
-
-

J

ys
t.
a

,

-

Substituting these into the moment equations and rearran
gives the first-order equations as

6n213n45
215

8Aprx
S 11

4p

15
rx D ,

18n21615n450, ~B5!

while the second order equations are

336«21168s2124s45814ApS 12
105

4rxp D n2212n2
2,

336«31168s3124s45814Apn2212n2
2,

144~«21«3!28064s112232~s21s3!1240s4

5242120n2
2148Apn21264Apan4 ,

2432«2214 760s211032s452161492n2
2224Apn2

148ApS 11
315

4rxp D n4 ,

2432«3214 760s311032s452161492n2
2224Apn2

148Apn4 ,

221 984s452321528ApS 11
315

44rxp D n221104n2
2

11104Apn4 . ~B6!
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