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Viscoelastic effects from the Enskog equation for uniform shear flow
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The Enskog kinetic equation for hard spheres is the only tractable theory with which the transport properties
of a moderately dense gas can be studied. However, relatively little is known about its solutions outside the
linear regime. In this paper two approximate nonlinear solutions of the Enskog equation for uniform shear flow
are presented: a perturbative solution to second order in the shear rate and to fourth order in velocity moments
and a “nonperturbative” moment solution to all orders in the shear rate and to second order in the velocity
moments. A comparison to the results of nonequilibrium molecular-dynamics simulations shows that the
perturbative results give good estimates of the quadratic corrections to the pressure tensor while the nonper-
turbative solution gives a semiquantitative description of viscoelastic effects including shear thinning and the
normal stresses over a wide range of shear rates. The relevance of these results to the construction of kinetic
models of the Enskog equation is also discusg8@063-651X97)08512-7

PACS numbsgfs): 05.20.Dd, 51.1Cty, 51.20-+d, 83.50.Gd

I. INTRODUCTION (USPH), in which the macroscopic flow velocity, defined to be
along thex axis, varies linearly with position along an or-
The Enskog equation, describing the time evolution of thehogonal axis, e.g., thg axis, has been the subject of numer-
one-body distribution function for hard spheres, is the onlyous studies, both theoretical and by means of computer simu-
tractable and realistic kinetic equation for a moderately denskation [12]. Indeed, one of the rare exact solutions to the
system{1-3]. It was originally proposed on physical grounds Boltzmann equation is that for a system of Maxwell mol-
as a heuristic generalization of the Boltzmann equation andcules(interacting via an inverse fourth power potentiah-
has since been further extended by van Beijeren and Erngergoing USH13,14]. This focus of attention is largely due
[4] to give a unified basis for the description of fluid, solid, to the fact that USF can be established by the application of
and metastable statd$]. Near equilibrium, the standard modified (Lees-Edwards periodic boundarieg15], thus
method for analyzing all of these models, since they aremaking it easy to simulate and incidently eliminate from
structurally very similar, is the Chapman-Enskog expansiontheoretical analysis complicating features such as boundary
At lowest nontrivial order, this gives explicit expressions for layers associated with walls. Furthermore, the state of USF
the linear (Navier-Stokes ordgrtransport coefficients in provides a direct probe of some of the transport properties of
terms of the intermolecular potential. The Boltzmann-levelthe fluid: For example, with the axes mentioned above, the
results provide a good description of linear transport in ax-y component of the stress tensor is the shear viscosity
wide range of low-density gases and mixtuf2s3]. The En-  times the shear rate. A final motivation is the fact, discovered
skog results are well known for their surprising accuracy[16] about ten years ago, that at high shear rates simple fluids
with, e.g., the shear viscosity of the hard-sphere gas bein@including the hard-sphere fluidindergo an ordering transi-
accurately predicted up to a density of one-half of the freeztion whereby the atoms are arranged in planes or strings
ing point[6]. Higher-order terms in the expansion describeperpendicular to the flow gradient. Indeed, two closely re-
nonlinear transport. However, because of the intricate naturkated Enskog-based theories of this transition have been for-
of the models, the expansion is analytically complex to carrymulated[17,18, which, although in qualitative agreement
through so that general results are only known to third ordewith the simulations, require as input the steady-state distri-
for the Boltzmann equatiof2,7], while only part of the bution at high shear rates for which the use of the perturba-
second- and third-order contributions have been calculatetive results is questionable. The present work was motivated,
for the Enskog equatiofB]. Apart from these perturbative in part, by a desire to investigate this point.
results, only a handful of exact solutions are known and then As mentioned above, the standard analysis of the Enskog
only for the Boltzmann equatiof®]. Thus, even with the equation makes use of the Chapman-Enskog expansion ac-
Boltzmann equation, systems far from equilibrium can onlycording to which the distribution is expanded in terms of a
be studied by numerical methods or by means of simplifiedyuantity characterizing the uniformity of the fluid: For USF
versions of the model. Both of these methods have recentlshis is simply the shear rate. This leads to a set of linear
been extended to the Enskog equafi®@,11], although nei- integral equations that are usually solved by means of the
ther has yet been widely studied. Chapman-Cowling expansid&,3], which is an expansion in
The purpose of this paper is to give a picture of nonlineaterms of a set of orthogonal polynomials of the momentum
transport as described by the Enskog theory for the particulaithe Sonine polynomials The first expansion obviously lim-
case of a sheared fluid. The state of uniform shear flowts the use of low-order results to small gradients, while the
second expansion is devoid of physical content and is simply
a mathematical convenience. An alternative method, first
*Electronic address: j.lutsko@arcadis.be proposed by Grad19,2,3,20,2] for analyzing the Boltz-
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mann equation, is to first expand the distribut{@bout local 9 . 9 L. 9 . .. .
equilibrium) in terms of a complete set of orthogonal poly- Ef(q,v;t)'FU -—f(q,u;t)+ —=-Fexdq,v;t)f(q,v;t)
nomials in the momentum. This, together with other simpli- aq dv

fying assumptions, including the truncation of the expansion =J[f,f], 2.1)

of the distribution, leads to a set of equations for the coeffi-
cients that are essentially an extension of the Navier-Stokqﬁherea andg are position and velocity and the difference

equations and that have been used to study the behavior gbyeen the Enskog and the Boltzmann equations lies in the

fluids under extreme conditions, e.g., in shock waves. Defqrm of the bilinear collision operator, which is given explic-

pending on the number of coefficients retained, Grad'’s origlitly in Appendix A. The final term on the left-hand side is a

nal equations are known in the literature as the 13- or 20pgssible contribution due to an externally imposed one-body

moment approximations. More generally, the methodforce: Most studies of USF include such a force to maintain

consists in projecting the kinetic equation onto a finite-a constant temperature as described below. The equation

dimensional space spanned by the chosen basis functions, theist be supplemented by boundary conditions, which are

choice of basis functions being restricted by the particulataken to be the Lees-Edwards conditions used in computer

boundary conditions being imposé¢#l]. The moment ap- simulations of sheared flojd5]. These are defined as peri-

proximation is interesting because no explicit assumption i®dic boundaries in the rest frame of the imposed flow profile.

made about the size of the gradients in the system: AlthougBpecifically, if the desired flow is taken to be

small gradients might provide a justification for truncating

the expansion of the distribution function, it is not in general . . .

required. Indeed, all of the assumptions Grad made to derive vo(r)=a- r=ayx (2.2

his approximations are exaf20] for the Maxwell gas(in- o

verse fourth power potentjalundergoing USF described by in a Cartesian coordinate system with basig/(z), then the

Ikenbgrry. and_ Truesdell were able to solve the Boltzmannl;,:l;_ljo(a) and periodic boundaries are imposed with re-

equation in this case. Thus the moment method has playeda A ) ) )

role in the study, e.g., of extended hydrodynamic md@gs spect toq’. It is easy to verify that if the external force is

where assumptions about the size of inhomogeneities cannéfly a function ofv’ then Eq.(2.1), expressed in the rest

be made. Here it is shown that the lowest nontrivial order offfame, is translationally invarianffor both the Boltzmann

the moment expansion gives a quantitatively reasonabl@nd Enskog collision operatgrand since the boundary con-

model for shear thinning and normal stresses at large sheéitions are as well, the equation admits of spatially homoge-

rates. The discussion of this point is an extension of thé€ous solutions. More generally, the solution need only be

preliminary account that appeared in Rgf3]. periodic in the rest frame and, indeed, recent studies have
In this paper the moment method is applied to the Enskodndicated that USF may not be the stable state for large sys-

equation for a system undergoing USF and the solutions af@ms[24]. Our interest here, however, is to understand the

compared to the results of molecular-dynamics simulationsproperties of the relatively small systems studied by com-

In Sec. Il the existence of a stationary solution under theduter simulation and from which transport and viscoelastic

conditions used to study USF by computer simulation is disfProperties may be measured and for these the homogeneous

cussed and two calculations based on a moment expansion gplution is of most interest. Given this, we seek solutions that

the distribution are presented. The first is the complete soluare spatially homogeneous in the local rest frame. It simpli-

tion to second order in the shear rate and to fourth order ifies matters to note that such solutions are also homogeneous

the (velocity) moments. The second is the solution to secondvhen expressed in terms of the laboratory coordinates and

order in the moments and to all orders in the shear rate€xcess velocity in which case we may write

These are compared, in Sec. lll, to computer simulations for . .

a relatively dense fluid and it is found that the accuracy of f(q,u;t)=f(v';t) (2.3

the Enskog equation appears to extend into the nonlinear

regime with the perturbative results being numerically accuprovided, of course, that the external force depends only on

rate near equilibrium and the nonperturbative results giving ahe excess velocityf’ and time, which will henceforth be

semiquantitative description of the shear viscosity and norassumed to be true.

mal stresses over the entire range of shear rates up to the To specify the macroscopic state, one needs to know the

ordering transition. The paper concludes in Sec. IV with arhydrodynamic fields, the local density velocity, and energy

extended discussion of the implications of these results odensity, or temperature, which are respectively defined as

the construction of a simple kinetic model of the Enskog

equation and on the construction of (enode) positive- - I

definite distribution function for strongly sheared hard- p(q,t)=f dv f(q,v.1),

sphere fluids.

p«i,t)a(a,t):j dv vf(q,u,t), (2.4)
Il. MOMENT SOLUTIONS TO THE ENSKOG EQUATION

Both the Enskog and the Boltzmann equations for the , > =§ > > :f { RPN PO
one-body reduced distribution function may be written as ea.H= 2p(q,t)kBT(q,t) dv2[v u@.nIf(a.v.n),
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and, in general, are also determined from the Enskog equgroposed by Graf,19,2(, is to first expand the distribution
tion about the local-equilibrium distribution in terms of the mo-

mentum as
ap

+V-pUu=
p V.pu=0,

> - > > 1 -
oo f(@.p.0=p(@0¢(C) 1+ 2, —e"AmP(©)f, (28
7+v*~<55>=<5ﬁexxa,5;t>>+] dv vJ[F.f],

J . N where c= Jm/kgTv' is a dimensionless excess velocity,
e+ V'<U§[U‘“<q't)]2> #(6) = (1/2mksT)¥%e~*2 is the local-equilibrium distribu-
o oL tion, ande is a fictitious parameter used to order the expan-
=(Fexd(q,v;t)-[v—u(q,D)]) sion. The functions[,,(p) are a complete set of polynomi-
1 . .. als in the components @. The prefactor is chosen for later
+f dvz[v—u(q,t)]z\][f,f], (2.5 convenience and a short notation for multiple indices has

been introduced wherebéy[n]EAil...in and repeated indices
where the angular brackets indicate an average over velocire summed. The series is truncated at some finite ordgr in
ties. (Here and henceforth, the mass of the particles is taketo be specific, we keep all terms to ordef, and thek—3
to be one). Given the form of the distributiof2.3), itimme-  unknown coefficients, or moments, are determined by substi-
diately follows that the density is spatially homogeneous aguting Eq.(2.8) into the Enskog equation and truncating con-
is the excess velocity(q,t) —v,(q), so that, if the center- sistently to ordeeX. Explicitly, this gives a set of equations
of-mass position and velocity are taken to be zero, we havr the (space- and time-dependgubefficients:

u(g,t)=ve(q). This then implies thate(q,t)=(i[v

—u(q,)]1%)=(3(v")? is also spatially homogeneous and dpA 1 .
the conservation equations become ot \ Prn(Co)yPrm(cy) .
P o, 1 onT/(. 0 N1 .
ot +SPAN T C'a—elp[l](cl) ar Pimi(Ca)
0
dpu .
= o, 2.6 ou (o V1 .
ot +pA[n]H~ (9—_,P[|](Cl) mp[n](cl)
C ! o

d s s 1 I
Ee(t)_aij<vilvj,>_<|:ext(v,)'U,>:EJ do’(v")2J[ 1,11, pAm |- - 1 .
+ " UP[|](C1)mp[n](Cl)

thus demonstrating that the macroscopic state is indeed that 0

of uniform shear flow with a time-dependent temperature. In 1 omT /.. o _o\1 .
computer simulations, it is usual to include an external force 5 pAm —=—+| v| ¢ —=Pp(C1) | 7 Ppm(Ca)

to keep the temperature constant so as to establish a steady 79 ¢y ' 0
state. Although there are many possible choices of the exter- U 9 1

nal force[25], only the simplest, given bﬁext(z;’)z_ 75’3 +pApn (9—qj_<vi<KP[|](01))n—,P[n](C1)>

wherey is a constant, will be considered here. Stationarity of : 1 ' 0

the energy then gives

10 . . .. 1 1
—3(pkgT)y=a;j(v{v)+ EJ do’(v")2J[f,fl=a;;P;;, :Xf dv,Prp(cy)d P¢HA[m1P[m1vP‘l”mA[n]P[n]}’
2.7 (2.9

where the last equality follows by comparing E@2.6) to
the macroscopic conservation laws. With the present choicethere ( )o indicates a velocity average over the local-
of coordinates[Eq. (2.2)], aj;=add;, and —3(pkgT)y  equilibrium ensemble and the factors ofhave been sup-
=aPy,=— a’7, wherey is the(shear-rate-depend@rshear  pressed. Indeed, we can now set 1 since these equations,
viscosity. which can be viewed as an extension of the Navier-Stokes
The Enskog equation is usually solved by means of theequations, are to be solved exactly. However, there are in
Chapman-Enskog expansid,3], which, in the present general an infinite number of equations so that, as a final
case, is an expansion of the distribution in powers of theapproximation, all but the fird equations are discardéthis
shear rate. The coefficients of the expansion in turn depeni$ equivalent to projecting the Enskog equation onto the sub-
on the (scalaj momentum and must be expanded as wellspace spanned by the fidstbasis functions For USF the
(usually in terms of Sonine polynomiglsAn alternative, moment equations reduce to
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aAq . R ticularly useful for generating an expansion in the gradients
T<P[I](C1)P[n](cl)>0 of the hydrodynamic fields since their tracelessness means
that the coefficients of the expansion can only be constructed
1 JinT from the gradients: Terms involving unit tensors give no
h — & = s : contribution. Thus, for USF, a solution to second order in the
+ S5 Am c- —=Ppy(cq) | Prmp(cy) ; . : .
2 ot 0 shear rate only requires the retention of terms in the series to

fourth order in the momentum. However, although polyno-
d - - mials of different order are orthogonal under an angular in-
+A["1aii<vi(fljp['](cl)) P[nl(cl)> tegration, they do not form a complete set and the coeffi-
0 cients of the expansion depend in general on the magnitude
of the momentum. Practically, this necessitates a second ex-
+A[n]
:A[m]A[n]pXJ' dv1Ppy(c) I dPmy  #Pmp]. (2.10

- d I -
c- TP[I](C1)> FextP[n](C1)> pansion of this scalar dependence for which the Sonine poly-
¢ 0 nomials are usually use@the so-called Chapman-Cowling
expansion[2,3]). In fact, for the case of a steady state in
which only a single gradient is present, as in USF, the
Chapman-Enskog expansion is essentially a moment expan-
sion ordered by the gradient, although it is not usually
For USF, one expects that the distribution function is a conphrased as such. In summary, let us note that these different
tinuous function of the velocity, so it is convenient to choosepgssibilities are all equivalent, differing only in the particular
the basis functions to be the three-dimensional Hermite polyterms inc'uded or exc|uded at a given Order in the expan_
nomials[20], which form a complete set and are mutually sjons: a difference that should be of minor importance if the

Orthogonal. They are defined as expansions are to be useful.
For USF, the tensorial nature of the coefficients must de-
 (R\=nl(_1\Nap?2 ? 9 p2/2 rive from the shear tensor and the unit tensor, which imme-
Hi .. (p)=n!(-1)"e e (211 . A .
ro aipi,  Ipi, diately implies that only even terms can occur in the expan-

sion. The moment equations reduce to
and satisfy the orthogonality property
n(a‘srx‘ssy"' 75rs)[8n5r(i1Ai2---in)s

1 3/2 . ) R R
S - pe2 =nl _
(277) f dpe” ¥ “Hn(P)Him (P)=n! nmSinjim) » +(N=1)e" 26,4 A i 85
(2.12 |
. N - . - :D[il"'in]+8 C[il"‘in][I]A[I]
with the multi-index Kronecker delta function defined as 0 if em
n#m and & "B i m AN Am] (2.19
1 with
5[n1[n'1:mp{i12,in} Oy Oigiy (213
Biy-iJunm
where the notation indicates that the sum is over all permu-
tations of the indices. Two useful properties of the polyno- 1
mials are EPXWJ dle[il~~~in](C1)‘][¢H[|] -¢H[m]]r
PiHj, ., (P)=Hij, g () N8 H,. 5(P),
' 5 ' b (2.14 Cliy--ig01= Bligigrorn + Briy-—-i yrigor
—H, .. (p)=n&.Hi .. P,
gp; 1l (1" "ipin) _
pl n n D[il"'in]_B[il”'in][o][ol y (216)

where we use a special notation in which symmetrized » )
indices are grouped by round parentheisg. 5(”)5% and the conditio\,, =0 serves to define the thermostat con-

. . S A stant. These equations exhibit an important feature of USF,
(3 +_5“)' In_ this c?s,ez, It 1fO"OWS ﬂlat<H[”1(c)>_3A[”1 which is the fact that the kinematic terms, on the left-hand
and, in particular,(zv'%)=zkgT(H(c)+3H(o)=2keT  side of Eq.(2.15, only couple thenth equation to moments
+3kgTA, so that, in general, one must impose the condi-of ordern and lower(specifically, onlyn andn—2). In the
tions Apg;= A1) =A =0. Consequently, the density, veloc- case of Maxwell molecules, the forward couplings, i.e., cou-
ity and energy fields are, in the general case, determined bylings of thenth equation to moments of order+1 or
the conservation equatior.5, while the other moments hjgher, which occur on the right-hand side of the equations,
are determined from Ecj29) An alternative choice of basis are exacﬂy zero, which is the reason the system can be
that is closely related to the moreefamiliar Chapman-Enskogolved[20]. As shown below, the forward couplings have a
expansion is to take the s¢P;,(p)} to be the traceless, relatively small effect in the present case, thus giving some
symmetric tensors of order [20]. These are simply related heuristic justification for the moment method.
to the spherical harmoni¢20] and represent an expansionin ~ Summarizing, the approximation to the kinetic equation is
the angular dependence of the distribution. This set is pambtained by neglecting all terms in Eq&.8) and (2.195
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above orders¥. There are still an infinite number of equa- while the second-order coefficients are

tions and now only a finite number of coefficients to deter-

mine, so it is necessary to introduce a further approximation 1025 N 105

according to which we neglect all but the filstequations. €2= 837 V2 va,

Effectively, this corresponds to projecting the Enskog equa- 323%x Vm 808X v

tion into the subspace spanned by the firftasis functions. 199 15 47 5

As the order of the approximation increases, this procedure . _— + /1+ _ Vo —— 12
. . S 3 pXT| V2 2

generates a sequence of approximations to the full kinetic 8484 gogyy\/m\ 63 202

equation. To ordee*, one finds

5
+ _
2(85,,8,5+ 75,5) (51 8+ SriA)ys 707/ ™V
(Dij + Cijrz 1Az + Crijia Aty 1= 1= 57— 3 Vet 55V
* Brijz 2 Ar AR

(2.17 L
4(a5xr5ys+ Yars)( 5r(iAjIm)s+ 35r(iAjI 5ms) To="Yo— 7 Y4,
=(Dijjim * Cijim, 12717121+ Cijim 141”1411
1
+Bijim, 271121 A12/1A2)» T3= Y3~ 2 Vas
together with the equation fixing the thermostat
O4= Y4, (2.21)
2aAXy+ 6'}/: ( Drr + C[I’I‘][Z /]A[ZI] + C[rr][4 /]A[4/] th
wi
+B[rr][z!][ZVI]A[ZI]A[ZH]). (2.18)
The primary difference between the solution of the Boltz- yl:i_ ;( 1+ ipxw) Vy— ivg
mann equation and the Enskog equation for USF is that for 480 32py\m 15 60

the Boltzmann equation, the coefficients appearing on the

right-hand sides of these equations are shear-rate indepen- _ (1+ 2_2 W)V
dent, whereas for the Enskog equation, they have a complex 320)(\/; 75PX 4
dependence on the shear rate.

15 105
Vy— Va,
16167 - 404pxm

A. Perturbative solution Y2=7y3t

The evaluation and expansion of the coefficients appear-

ing in Eq. (2.17) is discussed in the appendixes. It is also _ 115 14t 3 2
necessary to expand the coefficiem?] and Ay in the Y3T 1414 404;0)(\/; 105PX ™| V2" 1214”2
shear rate as, e.gA; ;,=aAl}) +a’Al%) +--- . Since the
only two tensors available are the shear tensor and the unit - E\/;W’
tensor, the coefficients to first order in the shear rate must 707
have the forrTAi(ll.)..in=n! Vndx(i, " Oi yy s wherew, is to be
determined. Similarly, the second-order contributions must y :i_ 315 (1+ ﬂp)(ﬂ v +£y2
have the form * 687 1832 x\7 315 27 458”2
AP=2erd; +e28 Byt eadyidy, (219 03
— —\[mv,. (2.22
Ai(jzlzn:24(0'15(ij5Im)+0'25x(i5jI5mx)+0'35y(i5jl5m)y 458
+ 048 xxyy)(ijim) )» The exact valu¢2] of v, is 1.016u compared to the present

_ - ) result of 3034 =1.015u«. It is interesting to compare these
with the condition that 8,+z,+£3=0. Straightforward resyits with those obtained if the forward couplings in the

calculation then leads to a set of linear equations for thgnoment equations are neglected. In this case; u , v,=0,
coefficients(details are given in Appendix)BThe first-order  5ng

coefficients are found to be

5
205 6 S2m8sT L Ve
=|— - 16Vmpy
V2 ( 202) My Vg 205V2 ) (229
1 1 1
. _ 4= _ 2
with 83—42+ 84\/771/2 52 (2.23

By way of comparison, if takingy=1 (i.e., p slightly less
than 0.5, then the full solution givesv,=—0.3288,

5 (1+47T )
16pyym | 157X
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v,=0.0096, £,—&3=0.0595, ande3=0.0094, whereas ever, that the approximate moment equations are so con-
without the forward couplings the result is,= —0.3240, strained. In the case of Maxwell molecules, the forward
v4=0.0, e,—e3=0.0571, ande;=0.0132. Although not couplings vanish identically irrespective of the size of the
completely negligible, the effect of the forward couplings aregradients and, as we have seen, their neglect has relatively
nevertheless relatively small, being comparable to the differlittle effect on the perturbative results. It therefore seems
ence between the exact valuewgfand the simplest approxi- reasonable to solve these equations without the assumption
mationv,= w. of small gradients. Because of the difficulty of carrying out

Combining Eqs(2.19 and(2.8) gives the explicit form of the calculations, only the equations for the second moments
the distribution to fourth order in the moments and to second

order in the shear rate: 2a(8x(i Sjyyt Ox(iAjy) T 27(6ij + Ayj)

f(p)=pe(P){1 +alvo+ v4(p?—7)]pypy+ayy(p*~ 10p? = Cijor+ CijimAim (2.29
+15)+a%e,+ v2(p*~ 7)1(p5— 3 P?) 2aAy+6y=Cro)t Crr imAim, (2.30
+a[eg+ 73(p2_7)](p§_ 1p? with the (exac) coefficients

+ay,(pips— 3 p?pi— % PPy + 35 p%)} +o(a)’.

(2.24)

The pressure tensor for a homogeneous system is given by

q 1 2,— w24 1 2
Cijoy=px | dqoiq; e + SWW+2)

X| erf

o)
EN
ot

1 - N e~ eoaa
PiJ:pAij+§m03X<qu 0(g-9)(9-9)%qiq;

1 - 8
(225) Ciij:Epr dq( | _\/;e_wzm‘f' 6w
where the integral is over the unit sphere. Straightforward

calculation gives for the pressure

M. _ i -w?/4
quqquqm \/;e +w

Vm (1
P—po=2a%p| ———xp| 5V7T—2v,+ v, | | +0(8%),
Po P 105" 2\/; CARG (@) X (0jdi Sim* d;dm3i| + did) Sjm T diUmS;ji)
(2.2
_ . 2 2, g)g— W4
where the equilibrium pressure igy=p[1+(27/3) px]. - 3\/;(W +8)e
The normal stresses are
’ 47 3 1 1
Po—Pyy=28"p(e;~85)| 1+ 7z px | +0(%), +§W(10+W2) erfl SW| =11 4iQ;Sim |-
P _p.—2g2 1+ 4_77 are considered here. These are solved numerically using a
xx~ Pzz= 8P| &2 15PX guasi-Newton methof27]. Numerically, better convergence
= is achieved by replacing Eq2.30 by the original condition
2\m 1 AntA,,+A,,=0. All of the calculations presented below
- — 3 XX vy 2z .
* 25 px<2\/;+2v2+ va||To(a%) are accurate to one part in“16r better.
(2.27

IlIl. COMPARISON TO MOLECULAR DYNAMICS

and the only off-diagonal component is In order to evaluate these results, | have performed non-

ppu e equilibrium molecular dynamicdviD) simulations of a hard-
Pyy=Pyx=—pa| vo| 1+ —=px |+ —zpx |+ (a%). sphere fluid with densitpo®= 0.5 (about one-half the freez-
15 15 ing density and sufficiently high that collisional effects are

(2.28 importan). The flow state is imposed by means of Lees-

These expressions may all be decomposed into the sum of,::aqwe:jrds bounda;ylcondn?nst atnd the tem_pirgture IS Imam—
kinetic contribution(zeroth order inpy) and a collisional ained approximately constant at a valylTo=1 by rescal-

contribution(first order inpy). The accuracy of Eqg2.2 ing the velocities to give a temperature of OTgswhenever
( PX) y as2.26 the temperature exceeds 1TQ5For each value of the shear

and (2.27) has recently been confirmed by comparison to . _ e . .
direct simulation of the Enskog equatif26]. rate, the S|mulat|on§ begin with an equilibrated fluid and are
run for 3x 10° collisions to reach the steady state. The sys-
tems are then run an addtionak3Pcollisions to accumu-
late the statistics. The various quantities are average for
The validity of the perturbative solution is obviously re- 10 000 collisions and recorded. The errors are estimated us-
stricted to the case of small gradients. It is not clear, howing Erpenbeck’s pooling methof28], according to which

B. Nonperturbative solution
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FIG. 1. Kinetic parts of the reduced normal stresBgs- PJ, , FIG. 3. Kinetic part of the shear viscosity as a function of re-

where the dimensionless pressure tensoPls=P;;/pkgT, as a  duced shear rate fgs=0.5. The circles are from MD, the line is
function of reduced shear rat@{=al/dpwkgT) for p=0.5 as calculated from the nonperturbative theory, and the triangles are
determined from simulatioffilled circles, the perturbative calcu- from the proposed kinetic theory.

lation (filled squarey the nonperturbative calculatioisolid line),
and the proposed kinetic modgq. (4.8)] (filled triangles. The

corresponding results fd®,— P*, are shown with open symbols. trast, the first viscometric function exhibits a strong shear-

rate dependence so that only its asymptotic value is esti-

the recorded values are averaged, or pooled, over some ﬁxéaated in the perturbative calculat_ion. _Anot_her gualitative
period, say, in groups of 50 000 collisions. The standard erdifférence between the two approximations is that the non-
ror (standard deviation divided by the square root of thePerturbative solution gives a semiquantitative model for
number of sampléss then computed over these pooled val- shear thinning whereas this is absent from the perturbative
ues. These estimated errors are found to be insensitive to tf§@lution since it is an ordea® effect. Figure 3 compares the
exact choice for the period and are in all cases comparable #gnetic contributions to the shear viscosity defined as
or smaller than the size of the symbols used in the figuregy= — Py/a. The agreement is reasonable over the entire
below. range of shear rates with the model accounting for about
Figure 1 shows a comparison of the kinetic parts of theB0% of the decrease of the viscosityait=0.7.
normal stresses as calculated from the two analytic solutions The collisional contributions to the pressure tensor in-
and the MD results. The simulations span a range of sheaiolve an additional approximation compared to the kinetic
rates from equilibrium t@* =al4p+/wkgT=0.7: Above this parts since they depend in general on all of the moments.
the fluid begins to order and the present analysis becomeghus one does not expect the results of either of the calcu-
inapplicable[29]. The value ofy has been taken to give the |ations to be as accurate at large shear rates as in the case of
equilibrium pressure as determined in the simulations. Notghe kinetic parts. The collisional contributions to the normal
that because of the thermostat, the kinetic contribution to thgtresses are Compared in F|g 4 and, as expected, the agree-

pressure is fixed so there are only two independent normahent is poorer than for the kinetic contributions. Somewhat
stresses. Both calculations give good approximations fogrprisingly, the collisional contributions to the pressure
Pyy—Pz,, with the perturbative calculation being slightly (rjg &) are extremely well modeled by the nonperturbative
better. However, foiP,,—Py, the perturbative estimate is (50 lation. The worst agreement is in the collisional contri-
qnly ac_curate_ for small shear rates whereas the nonperturbBUtions to the shear viscosity as shown in Fig. 6. Although

X e gﬁe effects are very small, it is nevertheless the case that the
of §hear rates. The reason f_or this can be seen in F|g._ Calculated decrease up & =0.7 is only about a one-third
which shows the same data in the form of the viscometric f the actual decr whi h. ms 10 indicate that it is th
functions  defined as y,=(P—Py)/a> and O €2 ecrease, which seems fo Indicate s the

Y= (Pyy— P,)/aZ. The latter is nearly constant over the most sensitive to the truncation of the expansion of the col-

entire range of shear rates so that the inclusion of the fourtHiSion integrals.
order moments in the perturbative calculation improves the
agreement relative to the nonperturbative estimate. In con-

0.12

0.08
Ve
0.04

FIG. 4. Collisional parts of the reduced normal stresses for
FIG. 2. Kinetic parts of the reduced viscometric functions for p=0.5 (same legend as Fig. 1, except that now the triangles are the
p=0.5 (same legend as Fig).1 maximum entropy resufteq. (4.15].
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J J .
—avy,—f+y—=-vf=—v(f—¢). 4.2
Vo (7 (f=¢). (42

The extension of this model to the Enskog equation is not
straightforward. In part, this is due to the fact that the LE
distribution is not in the null eigenspace of the Enskog op-
erator. An obvious remedy is to write

0.8 J[f,f]=J[¢,¢]+(J[f,f]—3[¢,¢>])“3[¢.¢]—V(f—(i)é)

FIG. 5. Collisional contribution to the reduced pressure as avhich reduces to the BGK model for the Boltzmann operator
function of reduced shear rate fpr=0.5 (same legend as Fig)4  while giving a part of the collisional transfer that distin-
guishes the Enskog operator. However, the equation for the
V. CONCLUSIONS thermostat that results is

The calculations presented here serve to show that the -
Enskog equation can be used to describe nonequilibrium _<avyvx>—3(PkBT)7=PXf dv v3[ ¢, ¢], (4.9
fluid properties at moderate density extend well beyond the
linear regime. The perturbative calculations are in goodwhich differs from the Enskog resui2.7) in that the colli-
agreement with the simulations at small shear rates and onlional term on the right-hand side is evaluated using the LE
for particular properties differ significantly at large sheardistribution so that only a part of the collisional contribution
rates. The nonperturbative calculations illustrate an alternao the viscosity is obtained. This suggests that more careful
tive means of analyzing the Enskog equation and yield, withreatment of the collisional term is needed. To this end, note
relatively little effort, a more realistic description of the nor- that, in terms of the moment equations, the original BGK
mal stresses and a semiquantitative model of shear thinningpproximation replaces all of the collisional coefficients by a

at large shear rates. It is clear that low-order moment exparsingle  representative  eigenvalue [21] BFn‘]E[T][m]
sions of the distribution are of limited use in describing col- = — v(,6(nm + Smod[ny1)- The approximation suggested

lisional transfer even when they are accurately determined.above[Eq. (4.3)], for the Enskog operator keeps all moments
These results are also of some relevance to a recent ajf the LE term but replaces all others by an eigenvalue. In
tempt to formulate a kinetic model of the Enskog equationparticular, this means that the coefficielg,o)0; are re-
The simplest kinetic model of the Boltzmann equation istained exactly and the others approximated: The obvious ex-
the Bhatner-Gross-KookBGK) model, which is based on tension is to retain more of the moments. This suggests a
the observation that the Boltzmann collision operator can belass of approximations whereby the collision operator is

written in the form separated into two pieces as above, in which the local-
equilibrium term is kept exactly as is some subset of the
JIf,f1=—v{f(1)— (1)} (4.2 moments of the second piece. The higher moments are

treated approximated with a single relaxation time giving the
(see Appendix A where, in the BGK approximation, the general approximation
velocity-dependent prefactor is approximated hg@nstank
relaxation time and the second term in square brackets by theyr¢ ¢1— H. B AiA
local equilibrium(LE) distribution function. These approxi- [1.1] n;m 1=t Lm0 m]
mations are based on the fact that the LE distribution is in
the null space of the Boltzmann operator and on the idea that =S H..B + H. B AA
the main role of collisions is to drive the system towards ; (I ={nltolto] n,I,%eS (1=t =20 m]

(local) equilibrium. For USF, the BGK equation becomes I+m=>0

BGK
+ > H B mAmAm

A
04 % Tmso
® A .

A
Nl . NN =3¢ 61+ > HimBraymAnAmm
. ¢ I’+’m>EO

L ]

[ ]
[ ]
0.36 | : — _V(f_‘ﬁ_nst[nlA[n] ! (4.5
0 02 _. 04 0.6 0.8 n>0

where the set of moments retained exactly is indicated by the
FIG. 6. Collisional contribution to the shear viscosity for Notationn,l,me S (this notation is schematic and, in particu-
p=0.5. The circles are from MD, the line is from the nonperturba-lar, does not imply that theameterms be used in the sum
tive theory, and the triangles are the maximum entropy r¢&gt ~ overn as in that oveil,m). This must be supplemented by
(4.19]. the self-consistency condition
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A =(Hpp) (4.6) contributions from the secor(ttacelessterm.| Additionally,
the DSB model also expands the tedin, ] in Hermite

for all . Except for the special treatment of the local- polynomials and makes the same truncation of the series, but
equilibrium term, this is a direct generalization of the Gross-this difference is not of conceptual importance, although it
Jackson extensiof30,21 of the BGK model. Notice that does lead to quantitatively inaccurate transport coefficients.
this involves two types of approximation. The first is the It is instructive to consider the moment equations obtained in
choice of momentd#\;; retained in the first sum on the third this approximation for the case of USF:
line that arise from approximating the distribution by its mo-
ment expansion. The second approximation is the selection (88ixSsy™ ¥6rs) (NS Ai..i ysT Ori A
of the number of terms retained in the expansion of the col-
lision operator itself(i.e., the range of the sums ovaj. -N. . _ A -
Before discussing specific choices, we note that one defi- Dii = VA '“+5n25"|+;>o Brjngm
ciency of this model is that it does not reduce to the standard B
BGK model at low density. To achieve this correspondence, —Bramm) AmArm - (4.9

one should separate out the Boltzmann contributions by writ- . . . .
ing P y The main simplifying feature of this model is the decoupling

of the moments fon>2. For example, the equations for the
fourth moments are

Si ys)

Th-1

IEF1=b.d1+ 2 HimBrammAiAum
nlmes (@0yxFsyt+ Y1) (NS, (iAjim)sT O (iAjI Omys

I+m>0
:Dijlm_VAijIma (41@
—y|f-d= X HigAm - . . .
n>0ines so that it is possible to immediately solve for the fourth
moment(or in general all moments for>2) in terms of the
=, 1+ >, H[n](B[n]“][m]—B[Bn]“][m]) second moments which are determined by the nonlinear
nhmes equation(4.9). However, to carry through this program still
requires the evaluation of the entiiiafinite) set of couplings
XA Am—v(f—¢) entering into Eq(4.9), which is, of course, impractical. In
fact, for USF the model is not actually any easier to solve
+ E H[n](BFn][I][m]_BFn?[II(][m])A[I]A[m]! than is the .model obtaineq by retaining the full set pf mo-
Ti:rgfos ment equations and dropping the forward couplifghkich

has the advantage of being the first step in a systematic so-
(4.7) lution of the Enskog equatignOn the other hand, the DSB
model does have the key simplifying feature of the BGK and
Jackson-Gross models which is that the velocity dependence
of the distribution is simple and explicitly givef21]. An
obvious simplification is to limit the moments entering into
the DSB model, namelA, andA,,,,. The simplicity of the

where B[Bn][,][m] are the couplings in the Boltzmann limit.

Neglect of the last term is part of the BGK approximation to
the Boltzmann equation and so it is consistent to drop it
giving the general BGK-like approximation to the Enskog

equation BGK model is only achieved by limiting attention to the
5 p 5 linear terms giving a very simple model
—ft+v-—=f+ —= Fof=[, ] v(f—
At TU et oz Fedf =il6.01-u(f-9) oo
—ftp —f+—-
ot iq o0 ext

+ ;m:es Hn) (Brajpim
I+ m>0 =J[¢,p]—v(f— )+ CAC |InAm

B
—Brmum)AmAm - (4.8

together with the self-consistency relati¢h.6). The price
paid for maintaining contact with the usual BGK approxima-where AC,, ;;»=C; im—CE ,,, and which, with the self-

tion is that while Eq.(4.5) can be systematically extended, consistency conditiof4.6), gives a simpler and more quan-

by the inclusion of more moments, tpresumably approxi- tjtatively accurate kinetic model than the original DSB pro-
mate the Enskog equation arbitrarily closely, E4.8) can  posal. For USF this becomes

only be a model of the Enskog equation since it rests on an

uncontrolled approximation. 9
The kinetic model for the Enskog equation suggested in —ac,—

Ref. [11], henceforth referred to as the Dufty-Santos-Brey

(DSB) model, consists of taking all values lgin above and _ >

restricting the sum oven to include only the projections v[t(c)= 4], (4.12

onto{Ho;=1Hy;=C,H[;;j=c*—3}. [To project ontoH,,  from which the equation for the second moments are easily
one writesH;;=3H,, &;+(Hi;—3H, &) and ignores the found to be

1
+ (CZ_ 3) g(ACss,ImAlm+ ACsslmrAlmr)v (4-11)

J . 1
f+ y0—6~cf=‘][¢,¢]+ §C2—1)ACSS|mA|m

aCy
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2(a6xSsyt ¥0rs) (Sr(iyAg)sT Ori)6(j)s) u= \/1+Aijaiaj,
1 n n
=Dij+ 8 3 ACH imAim— VA;; (4.13 W= agydy (4.16
together with the usual condition thak,,=0. The co- 1+2x° X 2

F(x)= [1—erf(x)]—

efficients ACrr,Im: Crr,lm_ Cll'ar,lm: Crr,Im(a-) - Crr,lm(o)y 2\/;8
whereC,, m(a) is the same as in Eq2.33). After solving
for Ajj, Eq.(4.11) can be directly integrated to give the full The results using this model, with the second moments taken
distribution. Choosing the relaxation time to give the correctfrom the nonperturbative calculation, are also shown in Figs.
viscosity in the low-density (Boltzmann limit gives 4-6 and are seen to be comparable to, or even slightly better
v= 16\7px/5. This model, based on the DSB proposal butthan, using the second moments. For kinetic theory calcula-
extended by inclusion of the local-equilibriudh, ¢] terms  tions of the properties of strongly sheared fluids, such as
and simplified by keeping only the linear, second momenthose presented in Refl7,18,29, which are based on the
contributions, is in surprising agreement with both the nonirst-order(in the shear perturbative correction to the equi-
perturbative results given above and the simulations. Thébrium distribution, the use of the model distribution given
equilibrium shear viscosity is by Egs.(4.15 and(4.16), which is simple, positive definite,
and gives a qualitative description of nonlinear effects such
e as shear thinning and normal stresses, would appear to be a
+t 5 PX| more realistic alternative and is currently being investigated.
In summary, these results show that the Enskog equation
which is the usuaflowest SoningEnskog result. The kinetic can be used to predict the properties of a sheared fluid well
parts of the viscometric functions as calculated with thisinto the nonlinear regime by means of the moment expan-
model are shown in Figs. 1-3 and are seen to be comparab#on. It has been shown that this information can be used to
to the moment solution. For the shear viscosity, the decreasextend and simplify the DSB model to give a simple kinetic
of the kinetic contribution with increasing shear rate is evenmodel of the Enskog equation, which, like the BGK model
somewhat closer to the simulation values than in the nonpelen which it is based, is exactly integrable for USF. Finally,
turbative calculation. these results have been used to give a simple, positive-
Although these results show that it is possible to constructlefinite model of the distribution function for USF.
simple kinetic models of the Enskog equation, they are of
limited value in the study of USF far from equilibrium ACKNOWLEDGMENTS
beause even in this simple case, the analytic form of the .
distribution is sufficiently complicated that it is not possible ~ The author is pleased to thank Andres Santos, J. W.
to calculate collisional contributions, e.g., to the pressurdufty, and J. J. Brey for several useful discussions.
tensor, analytically. Given the recent development of nu-
merical methods of solving the Enskog equation itself, APPENDIX A: THE ENSKOG COLLISION OPERATOR
there seems to be little incentive to carry through the calcu- . .
lations for the kinetic model numerically. To develop a Using the shorthand notatiof(1;t)=f(q;,ps;t), the
useful approximate distribution, it is interesting to consider acollision operator appearing in the Enskog equation can be
proposal of Ordbez, Brey, and Santog1] in the context Written as
of the Boltzmann equation which is that the nonequilibrium
distritzutign P% modfrlied by maximizing the entropy J[f’f]EXf df)z?_(lz)f(l;t)f(Z;t)
—fdqdv’f(q,v")In f(qu'), subject to the constraint that
the known moments be reproduckd the present case that . . . .
(Hpn(€))=Ayy for the known moments;]. Requiring E_UZXJ dpzf dq 8(q—o)[g-al[®(g-q)b1,
agreement through the second moments gives

4

14 4
1_5PX

n=—p| K

32 1 -0(—g-q)If(L;0f(2;0) (A1)
4,0)=p| =——— - _ s A1 7 o |
f(q,v)—p< 27TkBT) (detd) 2ex;< 2kBTv Aol where the first line introduces the hard-sphere scattering op-
(4.19 erator and, in the second Iim},: al— 52, g*: 51_ 52 and the

with Aj; =8, +A; . As an example of the use of this ap- (Zperator b,, replaces g by its postcollisional value

proximation, the kinetic contributions to the pressure are, b)Q, =gfq(g-q). The hard-sphere diame_ter has been explic-
construction, the same as those obtained from the moddly written so as to make clear the relation to the Boltzmann

used to evaluate the second moments, while the collisiongellision operator that is obtained by setting=0 andx=1.
contributions are easily determined to be Thus the Boltzmann operator is local in the sense that all

spatial arguments are evaluated at the same point; the fact
1 © fan o [W that this is not so for the Enskog operator accounts for the
mpij :2P)(f dg aig;uF| 55/, (4.19  additional shear-rate dependence occurring in the moment
B equations. It is also clear that since the spatial dependence of
with the collision operator occurs only throughit is translation-
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ally invariant. Notice also that this can be arranged into the

BGK form, (4.1) by defining
v=—?x [ b, [ dd 0~ 05 A6 -g-tanr2D,

—fdazfda 8(a—0a)|g-a|®(g-q)by,f(1;1)f(2;1)

¢
fdﬁzfda 8(a—0)|g-a|®(—g-q)f(L;0)f(2;1)
(A2)

To carry out the calculations, one needs to evaluate the co-

efficients

B =P xX{H (DT (12 H (1) Hpw (2))

=px(Hin(DHw(2) T (12 H (1)),
(A3)

where T, (12) is the conjugate of the scattering operator

T_(12) and is given by
T+(12>=—02Jda 8(q—0)®(—g-q)g-q(by,— 1)

:(TZJda@(—g’.a—aw><§'~a—aw>(blz—1>,
(Ad)

with w=q,q,. The perturbative expansion of the coeffi-
cients then follows from an expansion of this operator. First,

expand the momentum transfer operator as

by H(PY) =HI[p;—q(g-a)]
=H[p;—a(g’-q)—awgl=H[p;—q(g’- )]

R T
—awqg- —H[p;—a(g’-q)]
(9C2
+ Latwg g ” Hlp;—q(g’-q)]+
EaWQrQSM [p1—a(g"-q)]

- ~ 0 -
=b1,H(p;)—awq- —=bi,H(p1)
aC,
2

+ EaZwZa G bl,H(B}) +0(a)® (AS)
2 r SaCZr(9C23 12 1
so that one can write

T,.(12=TP12+aT? (12 +a?T?(12) +o(a)?,
(A6)
with

T<+°>(12>=—azf dg O(—g'-g)(g’-a)(b’ — 1),
TH(12)= —ozf dg @(—d'ﬁ)axay((b'—l)

A
—(9"- DG —-b"—/, (A7)
(?er (?plr
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T2(12= -2 44 0(~'-3-aw (3,4’

28— +(§ - D) ” b’
arb’ = (9" )G~

1r P2rP2s

X

Substituting this into Eq(A3) gives the desired expansion.

APPENDIX B: PERTURBATIVE EXPANSION
OF THE EQUATIONS

Recall the fourth-order equations given in the text:
2(a0y,0yst ¥6rs) (Orx(i 6j)sT Or(iAj)s)
=(Dij+ Crijirz 1Az + CrijpanArag
+ Bz 21~ 1AR)
4(28y; 8,5t ¥5:5) (81 i Ajimys+ 381 (1A Smys)
= (Dijim * Crijimyi2 1A+ Crijimya 1A
+Brijmiz/1121AR21 AR

Brmiing=pex{Hn(DHm(2)TL (12 H( (1)),
(B1)

Crum=Brumiror + Brugrogimy -

Di1=Brujojpo; -

Given the fact that the coefficients are at least of first order in
the shear rate, we see that we négg; andD ) to second
order in the shear rat€, ;v to first order, and ;2112

and Bpaji2/2 to zeroth order. The general couplings are
given in Eq.(A3). The required zeroth order couplings are
all given in Ref.[17], except forC{9=C{). The complete
set is

Lo ) A= —3A B2
o Clil1 21 = (ij)» (B2)

1 (0) 6
— Clina A= ~ 7 A ~ GijArss))
! o 6
— Clijim21A121= = 7 (3Aij Sim) ~ Avr i Sim) »

1 o 229 43
;C[ijlm][4]A[4] =~ 2 Aiim + 5gAni) Oim)

5
+ 2_8Arr335(ij 5Im) ’

1

a

B Aren= — o Ay = 8y AA
1211217 22T g\ Tifti T g GijrsPes [

© 23 41
Brijimiraiz 1A2121= 720 Aim) = 7280 951 Amyr

a

5
+ ﬂArsArsﬁ(ij 5Im) )
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where a= (16\/7/15) p2y. The first-order coefficientg:fﬂl% Substituting these into the moment equations and rearranging
are only needed in the combinatia{ A" and, as noted in  gives the first-order equations as

the text, the first-order moments have the form —15 41
AP=2v,a8,; -+ 8 1y, Wherev, is a (shear-independent 6V2+3V4:m 1+ 95px),

constant. It turns out to be convenient to calculate the com-

binationC(HAW directly. Interestingly, these can be worked 180+ 6150,=0 (B5)
out for generaln,m and are only nonzero im=n—2 or ’

m=n. For the cases of interest, | find while the second order equations are

cit) A<1>:a2va28—77(—65--+25-5-+25-5 ) 105
liil121°\2] 105 1j T2 OxiOxj T £ %yi%yi)s 3368, + 1680, + 240, =8+ 47 1= doxr vy— 1202,

96
Cfilj)lm][Z]AE:Zli == aszV2E(25(ij 5|m) — Oy 5j| 5m)x 3363+ 16803+ 240,=8+ 4\51;2— 121/%,
14 +¢&3)— 80640+ 223 + + 2400
= By(i 931 Smyy T 220y ijim ) (B3) Aeztes) 1+2282 0% ) ‘
= —4— 12002+ 48\wv,+264/wav,,
Cﬁ}m]m] Af=— aZPXVAﬁ(llﬁ(ij Oim) T 2 0yi 91 Smyx )
315 —432,— 14 76Qr,+ 10325 ,= — 16+ 49205 — 24\ v,

+26y(16j1 myy + 465y yi(ijim}) - 315
. o +48\m| 1+ Va,
Finally, the local-equilibrium terms are 4pxm
8w 2 4\/; 2
Dij=—28px 75 9xi 0y T 28°pX 755 (9ij + 2056 —432:3— 14 76073+ 10327, = — 16+ 49205 — 24\/7v,
+25,6,)+0(a?), (B4) +48\mv,,
88\m 5
Dijim= azp)(m( 8(ij Oim) T 4 Ox(i 6j1 Omyx + 4Oy (i 61 Omyy —21 9847, = —32+528/m| 1+ 44PX7T> Vo= 1104
+ 88 xxyyilijim])- +1104/7v,. (B6)

[1] D. Enskog, Kungl. Sv. Vetenskaosakad. HangB No. 4 [12] Nonlinear Fluid Dynamics,edited by H. Hanley(North-

(1922. _ _ Holland, Amsterdam, 1983Microscopic Simulation of Com-
[2] S. Chapman and T. G. Cowlinlylathematical Theory of Non- plex Flows edited by M. MareschalPlenum, New York,

uniform Gases3rd. ed.(Cambridge University Press, Cam- 1990.

bridge, 1970. [13] E. Ikenberry and C. Truesdell, J. Rat. Mech. ABab5(1956).

[3]J. H. Ferziger and H. G. KapelMathematical Theory of

Transport Processes in Gaséblorth-Holland, Amsterdam, [14] A. Santos and V. Garz@inpublishest

[15] A. W. Lees and S. F. Edwards, J. Phys5(1921(1972.

1972.
[4] H. van Beijeren and M. Ernst, Physi¢Amsterdarh 68, 437  L16] J- Erpenbeck, Phys. Rev. Lefi2, 1333(1984.

(1973. [17] T. R. Kirkpatrick and J. Nieuwoudt, Phys. Rev. Le&d6, 885
[5] T. R. Kirkpatrick, S. P. Das, M. H. Ernst, and J. Piasecki, J. (1985.

Chem. Phys92, 3768(1990. [18] J. F. Lutsko and J. W. Dufty, Phys. Rev. Léi6, 1571(1986);

[6] B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys.  J. F. Lutsko, J. W. Dufty, and S. P. Das, Phys. Re@%1311
53, 3813(1970; J. J. Erpenbeck and W. W. Wood, J. Stat. (1989.
Phys.24, 455(1981); J. Michels and N. Trappeniers, Physica [19] H. Grad, Commun. Pure Appl. Matf, 331 (1949.

A 104, 243(1980; 107, 299(1981). [20] C. Truesdell and R. Muncastefundamentals of Maxwell’'s
[7] D. Burnett, Proc. London Math. So89, 385 (1935; 40, 382 Kinetic Theory of a Simple Monoatomic Gg&cademic, New
(1936. York, 1980.
[8] Alves and Kremer, Physica A64, 759 (1990. [21] C. CercignaniMathematical Methods in Kinetic TheofRle-
[9] A. Santos and V. Garzo, iRarefied Gas Dynamicgdited by num, London, 196p
J. Harvey and G. LordOxford University Press, Oxford, [22] B. Kamgar-Parsi and E. D. G. Cohen, Physical3g 249
1995, pp. 13-22. (1986.

[10] J. M. Montanero and A. Santos, Phys. Revo4& 438(1996. [23] J. F. Lutsko, Phys. Rev. Letf8, 243(1997.
[11] J. W. Dufty, A. Santos, and J. Brey, Phys. Rev. Lé#t. 1270  [24] M. Lee, J. W. Dufty, J. M. Montanero, A. Santos, and J. F.
(1996. Lutsko, Phys. Rev. Letf76, 2702(1996.



446 JAMES F. LUTSKO PRE 58

[25] J. W. Dufty, A. Santos, J. J. Brey, and R. F. Rodriquez, Phys[28] J. Erpenbeck, Physica A18 144 (1983.

Rev. A 33, 459(1986. [29] J. F. Lutsko, Phys. Rev. Letf8, 243(1997.
[26] J. M. Montanero and A. Santdenpublished [30] E. P. Gross and E. A. Jackson, Phys. Flgd4432(1959.
[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. R. [31] J. Gamez Ord@ez, J. J. Brey, and A. Santos, Phys. RevilA
Flannery,Numerical Recipes in &2nd ed.(Cambridge Uni- 810(1990.

versity Press, Cambridge, 1992



